Underlying Lie algebras of quadratic Novikov algebras
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 2, page 323-328
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Zhiqi. "Underlying Lie algebras of quadratic Novikov algebras." Czechoslovak Mathematical Journal 61.2 (2011): 323-328. <http://eudml.org/doc/196874>.
@article{Chen2011,
abstract = {Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and the Hamiltonian operators in formal variational calculus. In this note we prove that the underlying Lie algebras of quadratic Novikov algebras are 2-step nilpotent. Moreover, we give the classification up to dimension $10$.},
author = {Chen, Zhiqi},
journal = {Czechoslovak Mathematical Journal},
keywords = {Novikov algebra; quadratic Novikov algebra; underlying Lie algebra; Novikov algebra; quadratic Novikov algebra; underlying Lie algebra},
language = {eng},
number = {2},
pages = {323-328},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Underlying Lie algebras of quadratic Novikov algebras},
url = {http://eudml.org/doc/196874},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Chen, Zhiqi
TI - Underlying Lie algebras of quadratic Novikov algebras
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 2
SP - 323
EP - 328
AB - Novikov algebras were introduced in connection with the Poisson brackets of hydrodynamic type and the Hamiltonian operators in formal variational calculus. In this note we prove that the underlying Lie algebras of quadratic Novikov algebras are 2-step nilpotent. Moreover, we give the classification up to dimension $10$.
LA - eng
KW - Novikov algebra; quadratic Novikov algebra; underlying Lie algebra; Novikov algebra; quadratic Novikov algebra; underlying Lie algebra
UR - http://eudml.org/doc/196874
ER -
References
top- Balinskii, A. A., Novikov, S. P., Poisson brackets of hydrodynamic type, Frobenius algebras and Lie algebras, Sov. Math., Dokl. 32 (1985), 228-231. (1985) Zbl0606.58018MR0802121
- Bordemann, M., Nondegenerate invariant bilinear forms on nonassociative algebras, Acta Math. Univ. Comen., New Ser. 66 (1997), 151-201. (1997) Zbl1014.17003MR1620480
- Burde, D., 10.1007/s10711-006-9059-y, Geom. Dedicata 122 (2006), 145-157. (2006) Zbl1118.17001MR2295546DOI10.1007/s10711-006-9059-y
- Dubrovin, B. A., Novikov, S. P., Hamiltonian formalism of one-dimensional systems of hydrodynamic type, and the Bogolyubov-Whitman averaging method, Sov. Math., Dokl. 27 (1983), 665-669. (1983) Zbl0553.35011
- Dubrovin, B. A., Novikov, S. P., On Poisson brackets of hydrodynamic type, Sov. Math., Dokl. 30 (1984), 651-654. (1984) MR0770656
- Figueroa-O'Farrilla, J. M., Stanciu, S., 10.1063/1.531620, J. Math. Phys. 37 (1996), 4121-4134. (1996) MR1400838DOI10.1063/1.531620
- Gel'fand, I. M., Dikii, L. A., 10.1070/RM1975v030n05ABEH001522, Russ. Math. Surv. 30 (1975), 77-113. (1975) Zbl0334.58007MR0508337DOI10.1070/RM1975v030n05ABEH001522
- Gel'fand, I. M., Dikii, L. A., 10.1007/BF01075767, Funct. Anal. Appl. 10 (1976), 16-22. (1976) Zbl0347.49023MR0467819DOI10.1007/BF01075767
- Gel'fand, I. M., Dorfman, I. Y., 10.1007/BF01078363, Funct. Anal. Appl. 13 (1980), 248-262. (1980) Zbl0437.58009DOI10.1007/BF01078363
- Xu, X. P., 10.1007/BF00750806, Lett. Math. Phys. 33 (1995), 1-6. (1995) Zbl0837.16034MR1315250DOI10.1007/BF00750806
- Xu, X. P., 10.1088/0305-4470/28/6/021, J. Phys. A: Math. Gen. 28 (1995), 1681-1698. (1995) Zbl0852.58043DOI10.1088/0305-4470/28/6/021
- Xu, X. P., 10.1006/jabr.1999.8064, J. Algebra 223 (2000), 396-437. (2000) Zbl1012.37048MR1735154DOI10.1006/jabr.1999.8064
- Zhu, F. H., Chen, Z. Q., 10.1088/1751-8113/40/47/014, J. Phys. A, Math. Theor. 40 (2007), 14243-14251. (2007) Zbl1127.17002MR2438123DOI10.1088/1751-8113/40/47/014
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.