The cubic mapping graph for the ring of Gaussian integers modulo
Yangjiang Wei; Jizhu Nan; Gaohua Tang
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 4, page 1023-1036
 - ISSN: 0011-4642
 
Access Full Article
topAbstract
topHow to cite
topWei, Yangjiang, Nan, Jizhu, and Tang, Gaohua. "The cubic mapping graph for the ring of Gaussian integers modulo $n$." Czechoslovak Mathematical Journal 61.4 (2011): 1023-1036. <http://eudml.org/doc/196934>.
@article{Wei2011,
	abstract = {The article studies the cubic mapping graph $\Gamma (n)$ of $\mathbb \{Z\}_n[\{\rm i\}]$, the ring of Gaussian integers modulo $n$. For each positive integer $n>1$, the number of fixed points and the in-degree of the elements $\overline\{1\}$ and $\overline\{0\}$ in $\Gamma (n)$ are found. Moreover, complete characterizations in terms of $n$ are given in which $\Gamma _\{2\}(n)$ is semiregular, where $\Gamma _\{2\}(n)$ is induced by all the zero-divisors of $\mathbb \{Z\}_n[\{\rm i\}]$.},
	author = {Wei, Yangjiang, Nan, Jizhu, Tang, Gaohua},
	journal = {Czechoslovak Mathematical Journal},
	keywords = {Gaussian integers modulo $n$; cubic mapping graph; fixed point; semiregularity; Gaussian integers modulo ; cubic mapping graph; fixed point; semiregularity},
	language = {eng},
	number = {4},
	pages = {1023-1036},
	publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
	title = {The cubic mapping graph for the ring of Gaussian integers modulo $n$},
	url = {http://eudml.org/doc/196934},
	volume = {61},
	year = {2011},
}
TY  - JOUR
AU  - Wei, Yangjiang
AU  - Nan, Jizhu
AU  - Tang, Gaohua
TI  - The cubic mapping graph for the ring of Gaussian integers modulo $n$
JO  - Czechoslovak Mathematical Journal
PY  - 2011
PB  - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL  - 61
IS  - 4
SP  - 1023
EP  - 1036
AB  - The article studies the cubic mapping graph $\Gamma (n)$ of $\mathbb {Z}_n[{\rm i}]$, the ring of Gaussian integers modulo $n$. For each positive integer $n>1$, the number of fixed points and the in-degree of the elements $\overline{1}$ and $\overline{0}$ in $\Gamma (n)$ are found. Moreover, complete characterizations in terms of $n$ are given in which $\Gamma _{2}(n)$ is semiregular, where $\Gamma _{2}(n)$ is induced by all the zero-divisors of $\mathbb {Z}_n[{\rm i}]$.
LA  - eng
KW  - Gaussian integers modulo $n$; cubic mapping graph; fixed point; semiregularity; Gaussian integers modulo ; cubic mapping graph; fixed point; semiregularity
UR  - http://eudml.org/doc/196934
ER  - 
References
top- Osba, E. Abu, Henriksen, M., Alkam, O., Smith, F. A., The maximal regular ideal of some commutative rings, Commentat. Math. Univ. Carol. 47 (2006), 1-10. (2006) MR2223962
 - Cross, J., 10.2307/2322785, Am. Math. Mon. 90 (1983), 518-528. (1983) Zbl0525.12001MR0717096DOI10.2307/2322785
 - Pan, C. D., Pan, C. B., Elementary Number Theory (2nd edition), Beijing University Publishing Company Beijing (2005), Chinese. (2005)
 - Skowronek-Kaziów, J., 10.1007/s10587-009-0003-9, Czech. Math. J. 59 (2009), 39-49. (2009) MR2486614DOI10.1007/s10587-009-0003-9
 - Skowronek-Kaziów, J., 10.1016/j.ipl.2008.05.002, Inf. Process. Lett. 108 (2008), 165-169. (2008) MR2452147DOI10.1016/j.ipl.2008.05.002
 - Somer, L., Křížek, M., 10.1023/B:CMAJ.0000042385.93571.58, Czech. Math. J. 54 (2004), 465-485. (2004) MR2059267DOI10.1023/B:CMAJ.0000042385.93571.58
 - Su, H. D., Tang, G. H., The prime spectrum and zero-divisors of , J. Guangxi Teach. Edu. Univ. 23 (2006), 1-4. (2006)
 - Tang, G. H., Su, H. D., Yi, Z., The structure of the unit group of , J. Guangxi Norm. Univ., Nat. Sci. 28 (2010), 38-41. (2010)
 - Wei, Y. J., Nan, J. Z., Tang, G. H., Su, H. D., The cubic mapping graphs of the residue classes of integers, Ars Combin. 97 (2010), 101-110. (2010) MR2732885
 
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.