The cubic mapping graph for the ring of Gaussian integers modulo n

Yangjiang Wei; Jizhu Nan; Gaohua Tang

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 4, page 1023-1036
  • ISSN: 0011-4642

Abstract

top
The article studies the cubic mapping graph Γ ( n ) of n [ i ] , the ring of Gaussian integers modulo n . For each positive integer n > 1 , the number of fixed points and the in-degree of the elements 1 ¯ and 0 ¯ in Γ ( n ) are found. Moreover, complete characterizations in terms of n are given in which Γ 2 ( n ) is semiregular, where Γ 2 ( n ) is induced by all the zero-divisors of n [ i ] .

How to cite

top

Wei, Yangjiang, Nan, Jizhu, and Tang, Gaohua. "The cubic mapping graph for the ring of Gaussian integers modulo $n$." Czechoslovak Mathematical Journal 61.4 (2011): 1023-1036. <http://eudml.org/doc/196934>.

@article{Wei2011,
abstract = {The article studies the cubic mapping graph $\Gamma (n)$ of $\mathbb \{Z\}_n[\{\rm i\}]$, the ring of Gaussian integers modulo $n$. For each positive integer $n>1$, the number of fixed points and the in-degree of the elements $\overline\{1\}$ and $\overline\{0\}$ in $\Gamma (n)$ are found. Moreover, complete characterizations in terms of $n$ are given in which $\Gamma _\{2\}(n)$ is semiregular, where $\Gamma _\{2\}(n)$ is induced by all the zero-divisors of $\mathbb \{Z\}_n[\{\rm i\}]$.},
author = {Wei, Yangjiang, Nan, Jizhu, Tang, Gaohua},
journal = {Czechoslovak Mathematical Journal},
keywords = {Gaussian integers modulo $n$; cubic mapping graph; fixed point; semiregularity; Gaussian integers modulo ; cubic mapping graph; fixed point; semiregularity},
language = {eng},
number = {4},
pages = {1023-1036},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The cubic mapping graph for the ring of Gaussian integers modulo $n$},
url = {http://eudml.org/doc/196934},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Wei, Yangjiang
AU - Nan, Jizhu
AU - Tang, Gaohua
TI - The cubic mapping graph for the ring of Gaussian integers modulo $n$
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 1023
EP - 1036
AB - The article studies the cubic mapping graph $\Gamma (n)$ of $\mathbb {Z}_n[{\rm i}]$, the ring of Gaussian integers modulo $n$. For each positive integer $n>1$, the number of fixed points and the in-degree of the elements $\overline{1}$ and $\overline{0}$ in $\Gamma (n)$ are found. Moreover, complete characterizations in terms of $n$ are given in which $\Gamma _{2}(n)$ is semiregular, where $\Gamma _{2}(n)$ is induced by all the zero-divisors of $\mathbb {Z}_n[{\rm i}]$.
LA - eng
KW - Gaussian integers modulo $n$; cubic mapping graph; fixed point; semiregularity; Gaussian integers modulo ; cubic mapping graph; fixed point; semiregularity
UR - http://eudml.org/doc/196934
ER -

References

top
  1. Osba, E. Abu, Henriksen, M., Alkam, O., Smith, F. A., The maximal regular ideal of some commutative rings, Commentat. Math. Univ. Carol. 47 (2006), 1-10. (2006) MR2223962
  2. Cross, J., 10.2307/2322785, Am. Math. Mon. 90 (1983), 518-528. (1983) Zbl0525.12001MR0717096DOI10.2307/2322785
  3. Pan, C. D., Pan, C. B., Elementary Number Theory (2nd edition), Beijing University Publishing Company Beijing (2005), Chinese. (2005) 
  4. Skowronek-Kaziów, J., 10.1007/s10587-009-0003-9, Czech. Math. J. 59 (2009), 39-49. (2009) MR2486614DOI10.1007/s10587-009-0003-9
  5. Skowronek-Kaziów, J., 10.1016/j.ipl.2008.05.002, Inf. Process. Lett. 108 (2008), 165-169. (2008) MR2452147DOI10.1016/j.ipl.2008.05.002
  6. Somer, L., Křížek, M., 10.1023/B:CMAJ.0000042385.93571.58, Czech. Math. J. 54 (2004), 465-485. (2004) MR2059267DOI10.1023/B:CMAJ.0000042385.93571.58
  7. Su, H. D., Tang, G. H., The prime spectrum and zero-divisors of n [ i ] , J. Guangxi Teach. Edu. Univ. 23 (2006), 1-4. (2006) 
  8. Tang, G. H., Su, H. D., Yi, Z., The structure of the unit group of n [ i ] , J. Guangxi Norm. Univ., Nat. Sci. 28 (2010), 38-41. (2010) 
  9. Wei, Y. J., Nan, J. Z., Tang, G. H., Su, H. D., The cubic mapping graphs of the residue classes of integers, Ars Combin. 97 (2010), 101-110. (2010) MR2732885

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.