Positive solutions for elliptic problems with critical nonlinearity and combined singularity
Jianqing Chen; Eugénio M. Rocha
Mathematica Bohemica (2010)
- Volume: 135, Issue: 4, page 413-422
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topChen, Jianqing, and Rocha, Eugénio M.. "Positive solutions for elliptic problems with critical nonlinearity and combined singularity." Mathematica Bohemica 135.4 (2010): 413-422. <http://eudml.org/doc/196955>.
@article{Chen2010,
abstract = {Consider a class of elliptic equation of the form \[ -\Delta u - \{\lambda \over \{|x|^2\}\}u = u^\{2^\ast -1\} + \mu u^\{-q\}\quad \mbox\{in\} \ \Omega \backslash \lbrace 0\rbrace \]
with homogeneous Dirichlet boundary conditions, where $0\in \Omega \subset \mathbb \{R\}^N$($N\ge 3$), $0 < q < 1$, $0 < \lambda <(N-2)^2/4$ and $2^\ast = 2N/(N-2)$. We use variational methods to prove that for suitable $\mu $, the problem has at least two positive weak solutions.},
author = {Chen, Jianqing, Rocha, Eugénio M.},
journal = {Mathematica Bohemica},
keywords = {multiple positive solutions; singular nonlinearity; critical nonlinearity; Hardy term; multiple positive solutions; singular nonlinearity; critical nonlinearity; Hardy term},
language = {eng},
number = {4},
pages = {413-422},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Positive solutions for elliptic problems with critical nonlinearity and combined singularity},
url = {http://eudml.org/doc/196955},
volume = {135},
year = {2010},
}
TY - JOUR
AU - Chen, Jianqing
AU - Rocha, Eugénio M.
TI - Positive solutions for elliptic problems with critical nonlinearity and combined singularity
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 4
SP - 413
EP - 422
AB - Consider a class of elliptic equation of the form \[ -\Delta u - {\lambda \over {|x|^2}}u = u^{2^\ast -1} + \mu u^{-q}\quad \mbox{in} \ \Omega \backslash \lbrace 0\rbrace \]
with homogeneous Dirichlet boundary conditions, where $0\in \Omega \subset \mathbb {R}^N$($N\ge 3$), $0 < q < 1$, $0 < \lambda <(N-2)^2/4$ and $2^\ast = 2N/(N-2)$. We use variational methods to prove that for suitable $\mu $, the problem has at least two positive weak solutions.
LA - eng
KW - multiple positive solutions; singular nonlinearity; critical nonlinearity; Hardy term; multiple positive solutions; singular nonlinearity; critical nonlinearity; Hardy term
UR - http://eudml.org/doc/196955
ER -
References
top- Ambrosetti, A., Brezis, H., Cerami, G., 10.1006/jfan.1994.1078, J. Functional Analysis 122 (1994), 519-543. (1994) Zbl0805.35028MR1276168DOI10.1006/jfan.1994.1078
- Brezis, H., Lieb, E., 10.2307/2044999, Proc. Amer. Math. Soc. 88 (1983), 486-490. (1983) Zbl0526.46037MR0699419DOI10.2307/2044999
- Catrina, F., Wang, Z. Q., 10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I, Comm. Pure. Appl. Math. 56 (2001), 229-258. (2001) Zbl1072.35506MR1794994DOI10.1002/1097-0312(200102)54:2<229::AID-CPA4>3.0.CO;2-I
- Chen, J., 10.1016/j.jmaa.2004.01.037, J. Math. Anal. Appl. 295 (2004), 341-354. (2004) MR2072017DOI10.1016/j.jmaa.2004.01.037
- Chen, J., Rocha, E. M., 10.1016/j.na.2009.03.048, Nonlinear Anal., Theory Methods Appl. 71 (2009), 4739-4750. (2009) Zbl1170.35430MR2548708DOI10.1016/j.na.2009.03.048
- Coclite, M. M., Palmieri, G., 10.1080/03605308908820656, Comm. Partial Differential Equations 14 (1989), 1315-1327. (1989) Zbl0692.35047MR1022988DOI10.1080/03605308908820656
- Hirano, N., Saccon, C., Shioji, N., Existence of multiple positive solutions for singular elliptic problems with a concave and convex nonlinearities, Adv. Differential Equations 9 (2004), 197-220. (2004) MR2099611
- Sun, Y., Wu, S., Long, Y., 10.1006/jdeq.2000.3973, J. Differential Equations 176 (2001), 511-531. (2001) Zbl1109.35344MR1866285DOI10.1006/jdeq.2000.3973
- Terracini, S., On positive entire solutions to a class of equations with singular coefficient and critical exponent, Adv. Differential Equations 1 (1996), 241-264. (1996) MR1364003
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.