The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Positive solutions for elliptic problems with critical nonlinearity and combined singularity”

Existence of two positive solutions for a class of semilinear elliptic equations with singularity and critical exponent

Jia-Feng Liao, Jiu Liu, Peng Zhang, Chun-Lei Tang (2016)

Annales Polonici Mathematici

Similarity:

We study the following singular elliptic equation with critical exponent ⎧ - Δ u = Q ( x ) u 2 * - 1 + λ u - γ in Ω, ⎨u > 0 in Ω, ⎩u = 0 on ∂Ω, where Ω N (N≥3) is a smooth bounded domain, and λ > 0, γ ∈ (0,1) are real parameters. Under appropriate assumptions on Q, by the constrained minimizer and perturbation methods, we obtain two positive solutions for all λ > 0 small enough.

On Kirchhoff type problems involving critical and singular nonlinearities

Chun-Yu Lei, Chang-Mu Chu, Hong-Min Suo, Chun-Lei Tang (2015)

Annales Polonici Mathematici

Similarity:

In this paper, we are interested in multiple positive solutions for the Kirchhoff type problem ⎧ - ( a + b Ω | u | ² d x ) Δ u = u + λ u q - 1 / | x | β in Ω ⎨ ⎩ u = 0 on ∂Ω, where Ω ⊂ ℝ³ is a smooth bounded domain, 0∈Ω, 1 < q < 2, λ is a positive parameter and β satisfies some inequalities. We obtain the existence of a positive ground state solution and multiple positive solutions via the Nehari manifold method.

Existence and nonexistence results for quasilinear elliptic equations involving the p -Laplacian

Boumediene Abdellaoui, Veronica Felli, Ireneo Peral (2006)

Bollettino dell'Unione Matematica Italiana

Similarity:

The paper deals with the study of a quasilinear elliptic equation involving the p-laplacian with a Hardy-type singular potential and a critical nonlinearity. Existence and nonexistence results are first proved for the equation with a concave singular term. Then we study the critical case related to Hardy inequality, providing a description of the behavior of radial solutions of the limiting problem and obtaining existence and multiplicity results for perturbed problems through variational...

Existence of a positive ground state solution for a Kirchhoff type problem involving a critical exponent

Lan Zeng, Chun Lei Tang (2016)

Annales Polonici Mathematici

Similarity:

We consider the following Kirchhoff type problem involving a critical nonlinearity: ⎧ - [ a + b ( Ω | u | ² d x ) m ] Δ u = f ( x , u ) + | u | 2 * - 2 u in Ω, ⎨ ⎩ u = 0 on ∂Ω, where Ω N (N ≥ 3) is a smooth bounded domain with smooth boundary ∂Ω, a > 0, b ≥ 0, and 0 < m < 2/(N-2). Under appropriate assumptions on f, we show the existence of a positive ground state solution via the variational method.

Korn's First Inequality with variable coefficients and its generalization

Waldemar Pompe (2003)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

If Ω n is a bounded domain with Lipschitz boundary Ω and Γ is an open subset of Ω , we prove that the following inequality Ω | A ( x ) u ( x ) | p d x 1 / p + Γ | u ( x ) | p d n - 1 ( x ) 1 / p c u W 1 , p ( Ω ) holds for all u W 1 , p ( Ω ; m ) and 1 < p < , where ( A ( x ) u ( x ) ) k = i = 1 m j = 1 n a k i j ( x ) u i x j ( x ) ( k = 1 , 2 , ... , r ; r m ) defines an elliptic differential operator of first order with continuous coefficients on Ω ¯ . As a special case we obtain Ω u ( x ) F ( x ) + ( u ( x ) F ( x ) ) T p d x c Ω | u ( x ) | p d x , ( * ) for all u W 1 , p ( Ω ; n ) vanishing on Γ , where F : Ω ¯ M n × n ( ) is a continuous mapping with det F ( x ) μ > 0 . Next we show that ( * ) is not valid if n 3 , F L ( Ω ) and det F ( x ) = 1 , but does hold if p = 2 , Γ = Ω and F ( x ) is symmetric and positive definite in Ω .

A population biological model with a singular nonlinearity

Sayyed Hashem Rasouli (2014)

Applications of Mathematics

Similarity:

We consider the existence of positive solutions of the singular nonlinear semipositone problem of the form - div ( | x | - α p | u | p - 2 u ) = | x | - ( α + 1 ) p + β a u p - 1 - f ( u ) - c u γ , x Ω , u = 0 , x Ω , where Ω is a bounded smooth domain of N with 0 Ω , 1 < p < N , 0 α < ( N - p ) / p , γ ( 0 , 1 ) , and a , β , c and λ are positive parameters. Here f : [ 0 , ) is a continuous function. This model arises in the studies of population biology of one species with u representing the concentration of the species. We discuss the existence of a positive solution when f satisfies certain additional conditions. We use the method of sub-supersolutions...