One Bootstrap suffices to generate sharp uniform bounds in functional estimation

Paul Deheuvels

Kybernetika (2011)

  • Volume: 47, Issue: 6, page 855-865
  • ISSN: 0023-5954

Abstract

top
We consider, in the framework of multidimensional observations, nonparametric functional estimators, which include, as special cases, the Akaike–Parzen–Rosenblatt kernel density estimators ([1, 18, 20]), and the Nadaraya–Watson kernel regression estimators ([16, 22]). We evaluate the sup-norm, over a given set 𝐈 , of the difference between the estimator and a non-random functional centering factor (which reduces to the estimator mean for kernel density estimation). We show that, under suitable general conditions, this random quantity is consistently estimated by the sup-norm over 𝐈 of the difference between the original estimator and a bootstrapped version of this estimator. This provides a simple and flexible way to evaluate the estimator accuracy, through a single bootstrap. The present work generalizes former results of Deheuvels and Derzko [4], given in the setup of density estimation in .

How to cite

top

Deheuvels, Paul. "One Bootstrap suffices to generate sharp uniform bounds in functional estimation." Kybernetika 47.6 (2011): 855-865. <http://eudml.org/doc/196965>.

@article{Deheuvels2011,
abstract = {We consider, in the framework of multidimensional observations, nonparametric functional estimators, which include, as special cases, the Akaike–Parzen–Rosenblatt kernel density estimators ([1, 18, 20]), and the Nadaraya–Watson kernel regression estimators ([16, 22]). We evaluate the sup-norm, over a given set $\{\bf I\}$, of the difference between the estimator and a non-random functional centering factor (which reduces to the estimator mean for kernel density estimation). We show that, under suitable general conditions, this random quantity is consistently estimated by the sup-norm over $\{\bf I\}$ of the difference between the original estimator and a bootstrapped version of this estimator. This provides a simple and flexible way to evaluate the estimator accuracy, through a single bootstrap. The present work generalizes former results of Deheuvels and Derzko [4], given in the setup of density estimation in $\mathbb \{R\}$.},
author = {Deheuvels, Paul},
journal = {Kybernetika},
keywords = {nonparametric functional estimation; density estimation; regression estimation; bootstrap; resampling methods; confidence regions; empirical processes; density estimation; nonparametric functional estimation; regression estimation; bootstrap; resampling methods; confidence regions; empirical processes},
language = {eng},
number = {6},
pages = {855-865},
publisher = {Institute of Information Theory and Automation AS CR},
title = {One Bootstrap suffices to generate sharp uniform bounds in functional estimation},
url = {http://eudml.org/doc/196965},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Deheuvels, Paul
TI - One Bootstrap suffices to generate sharp uniform bounds in functional estimation
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 6
SP - 855
EP - 865
AB - We consider, in the framework of multidimensional observations, nonparametric functional estimators, which include, as special cases, the Akaike–Parzen–Rosenblatt kernel density estimators ([1, 18, 20]), and the Nadaraya–Watson kernel regression estimators ([16, 22]). We evaluate the sup-norm, over a given set ${\bf I}$, of the difference between the estimator and a non-random functional centering factor (which reduces to the estimator mean for kernel density estimation). We show that, under suitable general conditions, this random quantity is consistently estimated by the sup-norm over ${\bf I}$ of the difference between the original estimator and a bootstrapped version of this estimator. This provides a simple and flexible way to evaluate the estimator accuracy, through a single bootstrap. The present work generalizes former results of Deheuvels and Derzko [4], given in the setup of density estimation in $\mathbb {R}$.
LA - eng
KW - nonparametric functional estimation; density estimation; regression estimation; bootstrap; resampling methods; confidence regions; empirical processes; density estimation; nonparametric functional estimation; regression estimation; bootstrap; resampling methods; confidence regions; empirical processes
UR - http://eudml.org/doc/196965
ER -

References

top
  1. Akaike, H., 10.1007/BF02900741, Ann. Inst. Statist. Math. 6 (1954), 127–132. (1954) MR0067412DOI10.1007/BF02900741
  2. Bickel, P. J., Rosenblatt, M., 10.1214/aos/1176342558, Ann. Statist. 1 (1973), 1071–1095. (1973) MR0348906DOI10.1214/aos/1176342558
  3. Claeskens, G., Keilegom, I. van, 10.1214/aos/1074290329, Ann. Statist. 31 (2003), 1852–1884. (2003) MR2036392DOI10.1214/aos/1074290329
  4. Deheuvels, P., Derzko, G., Asymptotic certainty bands for kernel density estimators based upon a bootstrap resampling scheme, In: Statistical Models and Methods for Biomedical and Technical systems, Stat. Ind. Technol., Birkhäuser, Boston MA 2008, pp. 171–186. (2008) MR2462913
  5. Deheuvels, P., Mason, D. M., 10.1023/B:SISP.0000049092.55534.af, Statist. Infer. Stoch. Processes 7 (2004), 225–277. (2004) Zbl1125.62314MR2111291DOI10.1023/B:SISP.0000049092.55534.af
  6. Dudley, R. M., Uniform Central Limit Theorems, Cambridge University Press, Cambridge 1999. (1999) Zbl0951.60033MR1720712
  7. Efron, B., 10.1214/aos/1176344552, Ann. Statist. 7 (1979), 1–26. (1979) Zbl0406.62024MR0515681DOI10.1214/aos/1176344552
  8. Einmahl, U., Mason, D. M., 10.1214/009053605000000129, Ann. Statist. 33 (2005), 1380–1403. (2005) Zbl1079.62040MR2195639DOI10.1214/009053605000000129
  9. Giné, E., Koltchinskii, V., Sakhanenko, L., 10.1007/s00440-004-0339-x, Probab. Theory Related Fields 130 (2004), 167–198. (2004) Zbl1048.62041MR2093761DOI10.1007/s00440-004-0339-x
  10. Giné, E., Mason, D.  M., 10.1214/009053607000000154, Ann. Statist. 35 (2007), 1105–1145. (2007) Zbl1175.60017MR2341700DOI10.1214/009053607000000154
  11. Hall, P., The Bootstrap and Edgeworth Expansion, Springer, New York 1992. (1992) Zbl0829.62021MR1145237
  12. Härdle, W., Marron, J. S., 10.1214/aos/1176348120, Ann. Statist. 19 (1991), 778–796. (1991) MR1105844DOI10.1214/aos/1176348120
  13. Härdle, W., Bowman, A. W., Bootstrapping in nonparametric regression: Local adaptative smoothing and confidence bands, J. Amer. Statist. Assoc. 83 (1988), 102–110. (1988) MR0941002
  14. Li, G., Datta, S., 10.1023/A:1014644700806, Ann. Inst. Statist. Math. 53 (2001), 708–729. (2001) Zbl1003.62036MR1879606DOI10.1023/A:1014644700806
  15. Mason, D.  M., Newton, M. A., 10.1214/aos/1176348787, Ann. Statist. 20 (1992), 1611–1624. (1992) Zbl0777.62045MR1186268DOI10.1214/aos/1176348787
  16. Nadaraya, E. A., 10.1137/1109020, Theor. Probab. Appl. 9 (1964), 141–142. (1964) Zbl0136.40902DOI10.1137/1109020
  17. Nolan, D., Pollard, D., 10.1214/aos/1176350374, Ann. Statist. 15 (1987), 780–799. (1987) Zbl0624.60048MR0888439DOI10.1214/aos/1176350374
  18. Parzen, E., 10.1214/aoms/1177704472, Ann. Math. Statist. 33 (1962), 1065–1076. (1962) MR0143282DOI10.1214/aoms/1177704472
  19. Pollard, D., Convergence of Stochastic Processes, Springer, New York 1984. (1984) Zbl0544.60045MR0762984
  20. Rosenblatt, M., 10.1214/aoms/1177728190, Ann. Math. Statist. 27 (1956), 832–837. (1956) Zbl0073.14602MR0079873DOI10.1214/aoms/1177728190
  21. Vaart, A. W. van der, Wellner, J. A., Weak Convergence and Empirical Processes with Aplications to Statistics, Springer, New York 1996. (1996) MR1385671
  22. Watson, G. S., Smooth regression analysis, Sankhyā A 26 (1964), 359–372. (1964) Zbl0137.13002MR0185765

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.