One Bootstrap suffices to generate sharp uniform bounds in functional estimation
Kybernetika (2011)
- Volume: 47, Issue: 6, page 855-865
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topDeheuvels, Paul. "One Bootstrap suffices to generate sharp uniform bounds in functional estimation." Kybernetika 47.6 (2011): 855-865. <http://eudml.org/doc/196965>.
@article{Deheuvels2011,
abstract = {We consider, in the framework of multidimensional observations, nonparametric functional estimators, which include, as special cases, the Akaike–Parzen–Rosenblatt kernel density estimators ([1, 18, 20]), and the Nadaraya–Watson kernel regression estimators ([16, 22]). We evaluate the sup-norm, over a given set $\{\bf I\}$, of the difference between the estimator and a non-random functional centering factor (which reduces to the estimator mean for kernel density estimation). We show that, under suitable general conditions, this random quantity is consistently estimated by the sup-norm over $\{\bf I\}$ of the difference between the original estimator and a bootstrapped version of this estimator. This provides a simple and flexible way to evaluate the estimator accuracy, through a single bootstrap. The present work generalizes former results of Deheuvels and Derzko [4], given in the setup of density estimation in $\mathbb \{R\}$.},
author = {Deheuvels, Paul},
journal = {Kybernetika},
keywords = {nonparametric functional estimation; density estimation; regression estimation; bootstrap; resampling methods; confidence regions; empirical processes; density estimation; nonparametric functional estimation; regression estimation; bootstrap; resampling methods; confidence regions; empirical processes},
language = {eng},
number = {6},
pages = {855-865},
publisher = {Institute of Information Theory and Automation AS CR},
title = {One Bootstrap suffices to generate sharp uniform bounds in functional estimation},
url = {http://eudml.org/doc/196965},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Deheuvels, Paul
TI - One Bootstrap suffices to generate sharp uniform bounds in functional estimation
JO - Kybernetika
PY - 2011
PB - Institute of Information Theory and Automation AS CR
VL - 47
IS - 6
SP - 855
EP - 865
AB - We consider, in the framework of multidimensional observations, nonparametric functional estimators, which include, as special cases, the Akaike–Parzen–Rosenblatt kernel density estimators ([1, 18, 20]), and the Nadaraya–Watson kernel regression estimators ([16, 22]). We evaluate the sup-norm, over a given set ${\bf I}$, of the difference between the estimator and a non-random functional centering factor (which reduces to the estimator mean for kernel density estimation). We show that, under suitable general conditions, this random quantity is consistently estimated by the sup-norm over ${\bf I}$ of the difference between the original estimator and a bootstrapped version of this estimator. This provides a simple and flexible way to evaluate the estimator accuracy, through a single bootstrap. The present work generalizes former results of Deheuvels and Derzko [4], given in the setup of density estimation in $\mathbb {R}$.
LA - eng
KW - nonparametric functional estimation; density estimation; regression estimation; bootstrap; resampling methods; confidence regions; empirical processes; density estimation; nonparametric functional estimation; regression estimation; bootstrap; resampling methods; confidence regions; empirical processes
UR - http://eudml.org/doc/196965
ER -
References
top- Akaike, H., 10.1007/BF02900741, Ann. Inst. Statist. Math. 6 (1954), 127–132. (1954) MR0067412DOI10.1007/BF02900741
- Bickel, P. J., Rosenblatt, M., 10.1214/aos/1176342558, Ann. Statist. 1 (1973), 1071–1095. (1973) MR0348906DOI10.1214/aos/1176342558
- Claeskens, G., Keilegom, I. van, 10.1214/aos/1074290329, Ann. Statist. 31 (2003), 1852–1884. (2003) MR2036392DOI10.1214/aos/1074290329
- Deheuvels, P., Derzko, G., Asymptotic certainty bands for kernel density estimators based upon a bootstrap resampling scheme, In: Statistical Models and Methods for Biomedical and Technical systems, Stat. Ind. Technol., Birkhäuser, Boston MA 2008, pp. 171–186. (2008) MR2462913
- Deheuvels, P., Mason, D. M., 10.1023/B:SISP.0000049092.55534.af, Statist. Infer. Stoch. Processes 7 (2004), 225–277. (2004) Zbl1125.62314MR2111291DOI10.1023/B:SISP.0000049092.55534.af
- Dudley, R. M., Uniform Central Limit Theorems, Cambridge University Press, Cambridge 1999. (1999) Zbl0951.60033MR1720712
- Efron, B., 10.1214/aos/1176344552, Ann. Statist. 7 (1979), 1–26. (1979) Zbl0406.62024MR0515681DOI10.1214/aos/1176344552
- Einmahl, U., Mason, D. M., 10.1214/009053605000000129, Ann. Statist. 33 (2005), 1380–1403. (2005) Zbl1079.62040MR2195639DOI10.1214/009053605000000129
- Giné, E., Koltchinskii, V., Sakhanenko, L., 10.1007/s00440-004-0339-x, Probab. Theory Related Fields 130 (2004), 167–198. (2004) Zbl1048.62041MR2093761DOI10.1007/s00440-004-0339-x
- Giné, E., Mason, D. M., 10.1214/009053607000000154, Ann. Statist. 35 (2007), 1105–1145. (2007) Zbl1175.60017MR2341700DOI10.1214/009053607000000154
- Hall, P., The Bootstrap and Edgeworth Expansion, Springer, New York 1992. (1992) Zbl0829.62021MR1145237
- Härdle, W., Marron, J. S., 10.1214/aos/1176348120, Ann. Statist. 19 (1991), 778–796. (1991) MR1105844DOI10.1214/aos/1176348120
- Härdle, W., Bowman, A. W., Bootstrapping in nonparametric regression: Local adaptative smoothing and confidence bands, J. Amer. Statist. Assoc. 83 (1988), 102–110. (1988) MR0941002
- Li, G., Datta, S., 10.1023/A:1014644700806, Ann. Inst. Statist. Math. 53 (2001), 708–729. (2001) Zbl1003.62036MR1879606DOI10.1023/A:1014644700806
- Mason, D. M., Newton, M. A., 10.1214/aos/1176348787, Ann. Statist. 20 (1992), 1611–1624. (1992) Zbl0777.62045MR1186268DOI10.1214/aos/1176348787
- Nadaraya, E. A., 10.1137/1109020, Theor. Probab. Appl. 9 (1964), 141–142. (1964) Zbl0136.40902DOI10.1137/1109020
- Nolan, D., Pollard, D., 10.1214/aos/1176350374, Ann. Statist. 15 (1987), 780–799. (1987) Zbl0624.60048MR0888439DOI10.1214/aos/1176350374
- Parzen, E., 10.1214/aoms/1177704472, Ann. Math. Statist. 33 (1962), 1065–1076. (1962) MR0143282DOI10.1214/aoms/1177704472
- Pollard, D., Convergence of Stochastic Processes, Springer, New York 1984. (1984) Zbl0544.60045MR0762984
- Rosenblatt, M., 10.1214/aoms/1177728190, Ann. Math. Statist. 27 (1956), 832–837. (1956) Zbl0073.14602MR0079873DOI10.1214/aoms/1177728190
- Vaart, A. W. van der, Wellner, J. A., Weak Convergence and Empirical Processes with Aplications to Statistics, Springer, New York 1996. (1996) MR1385671
- Watson, G. S., Smooth regression analysis, Sankhyā A 26 (1964), 359–372. (1964) Zbl0137.13002MR0185765
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.