Invariant approximation for fuzzy nonexpansive mappings

Ismat Beg; Mujahid Abbas

Mathematica Bohemica (2011)

  • Volume: 136, Issue: 1, page 51-59
  • ISSN: 0862-7959

Abstract

top
We establish results on invariant approximation for fuzzy nonexpansive mappings defined on fuzzy metric spaces. As an application a result on the best approximation as a fixed point in a fuzzy normed space is obtained. We also define the strictly convex fuzzy normed space and obtain a necessary condition for the set of all t -best approximations to contain a fixed point of arbitrary mappings. A result regarding the existence of an invariant point for a pair of commuting mappings on a fuzzy metric space is proved. Our results extend, generalize and unify various known results in the existing literature.

How to cite

top

Beg, Ismat, and Abbas, Mujahid. "Invariant approximation for fuzzy nonexpansive mappings." Mathematica Bohemica 136.1 (2011): 51-59. <http://eudml.org/doc/197013>.

@article{Beg2011,
abstract = {We establish results on invariant approximation for fuzzy nonexpansive mappings defined on fuzzy metric spaces. As an application a result on the best approximation as a fixed point in a fuzzy normed space is obtained. We also define the strictly convex fuzzy normed space and obtain a necessary condition for the set of all $t$-best approximations to contain a fixed point of arbitrary mappings. A result regarding the existence of an invariant point for a pair of commuting mappings on a fuzzy metric space is proved. Our results extend, generalize and unify various known results in the existing literature.},
author = {Beg, Ismat, Abbas, Mujahid},
journal = {Mathematica Bohemica},
keywords = {fuzzy normed space; strictly convex fuzzy normed space; fixed point; fuzzy nonexpansive mapping; fuzzy best approximation; fuzzy Banach mapping; fuzzy normed space; strictly convex fuzzy normed space; fixed point; fuzzy nonexpansive mapping; fuzzy best approximation; fuzzy Banach mapping},
language = {eng},
number = {1},
pages = {51-59},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Invariant approximation for fuzzy nonexpansive mappings},
url = {http://eudml.org/doc/197013},
volume = {136},
year = {2011},
}

TY - JOUR
AU - Beg, Ismat
AU - Abbas, Mujahid
TI - Invariant approximation for fuzzy nonexpansive mappings
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 1
SP - 51
EP - 59
AB - We establish results on invariant approximation for fuzzy nonexpansive mappings defined on fuzzy metric spaces. As an application a result on the best approximation as a fixed point in a fuzzy normed space is obtained. We also define the strictly convex fuzzy normed space and obtain a necessary condition for the set of all $t$-best approximations to contain a fixed point of arbitrary mappings. A result regarding the existence of an invariant point for a pair of commuting mappings on a fuzzy metric space is proved. Our results extend, generalize and unify various known results in the existing literature.
LA - eng
KW - fuzzy normed space; strictly convex fuzzy normed space; fixed point; fuzzy nonexpansive mapping; fuzzy best approximation; fuzzy Banach mapping; fuzzy normed space; strictly convex fuzzy normed space; fixed point; fuzzy nonexpansive mapping; fuzzy best approximation; fuzzy Banach mapping
UR - http://eudml.org/doc/197013
ER -

References

top
  1. Bag, T., Samanta, S. K., 10.1016/j.ins.2005.07.013, Inf. Sci. 176 (2006), 2910-2931. (2006) MR2249178DOI10.1016/j.ins.2005.07.013
  2. Bag, T., Samanta, S. K., Fixed point theorems in Felbin's type fuzzy normed spaces, J. Fuzzy Math. 16 (2008), 243-260. (2008) MR2388141
  3. Beg, I., Abbas, M., Common fixed points of Banach operator pair on fuzzy normed spaces, Fixed Point Theory (to appear). MR2463941
  4. Beg, I., Sedghi, S., Shobe, N., Common fixed point of uniformly R -subweakly commuting mappings in fuzzy Banach spaces, J. Fuzzy Math. 18 (2010), 75-84. (2010) Zbl1204.47098MR2647702
  5. Deng, Z. K., 10.1016/0022-247X(82)90255-4, J. Math. Anal. Appl. 86 (1982), 74-95. (1982) Zbl0501.54003DOI10.1016/0022-247X(82)90255-4
  6. W. G. Dotson, Jr., 10.1090/S0002-9939-1973-0313894-9, Proc. Amer. Math. Soc. 38 (1973), 155-156. (1973) Zbl0274.47029MR0313894DOI10.1090/S0002-9939-1973-0313894-9
  7. Naschie, M. S. El, 10.1016/j.chaos.2004.12.024, Chaos Solitons Fractals 26 (2005), 257-261. (2005) DOI10.1016/j.chaos.2004.12.024
  8. George, A., Veeramani, P., On some results in fuzzy metric space, Fuzzy Sets Syst. 64 (1994), 395-399. (1994) MR1289545
  9. George, A., Veeramani, P., On some results of analysis for fuzzy metric space, Fuzzy Sets Syst. 90 (1997), 365-368. (1997) MR1477836
  10. Kramosil, I., Michalek, J., Fuzzy metrics and statistical metric spaces, Kybernetika, Praha 11 (1975), 336-344. (1975) Zbl0319.54002MR0410633
  11. Kaleva, O., Seikkala, S., On fuzzy metric spaces, Fuzzy Sets Syst. 12 (1984), 215-229. (1984) Zbl0558.54003MR0740095
  12. Narang, T. D., Chandok, S., Fixed points and best approximation in metric spaces, Indian J. Math., Pramila Srivastava memorial 51 (2009), 293-303. (2009) Zbl1180.41024MR2537948
  13. Sharma, S., Common fixed point theorems in fuzzy metric spaces, Fuzzy Sets Syst. 127 (2002), 345-352. (2002) Zbl0990.54029MR1899067
  14. Vaezpour, S. M., Karimi, F., t -best approximation in fuzzy normed spaces, Iran. J. Fuzzy Syst. 5 (2008), 93-99. (2008) Zbl1171.46051MR2432015
  15. Veeramani, P., 10.1016/0022-247X(92)90243-7, J. Math. Anal. Appl. 167 (1992), 160-166. (1992) Zbl0780.47047MR1165265DOI10.1016/0022-247X(92)90243-7
  16. Veeramani, P., Best approximation in fuzzy metric spaces, J. Fuzzy Math. 9 (2001), 75-80. (2001) Zbl0986.54006MR1822315
  17. Zadeh, L. A., 10.1016/S0019-9958(65)90241-X, Inform. Acad Control 8 (1965), 338-353. (1965) Zbl0139.24606MR0219427DOI10.1016/S0019-9958(65)90241-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.