The -Neumann operator on Lipschitz -pseudoconvex domains
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 3, page 721-731
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSaber, Sayed. "The $\bar{\partial }$-Neumann operator on Lipschitz $q$-pseudoconvex domains." Czechoslovak Mathematical Journal 61.3 (2011): 721-731. <http://eudml.org/doc/197031>.
@article{Saber2011,
abstract = {On a bounded $q$-pseudoconvex domain $\Omega $ in $\mathbb \{C\}^\{n\}$ with a Lipschitz boundary, we prove that the $\bar\{\partial \}$-Neumann operator $N$ satisfies a subelliptic $(1/2)$-estimate on $\Omega $ and $N$ can be extended as a bounded operator from Sobolev $(-1/2)$-spaces to Sobolev $(1/2)$-spaces.},
author = {Saber, Sayed},
journal = {Czechoslovak Mathematical Journal},
keywords = {Sobolev estimate; $\bar\{\partial \}$ and $\bar\{\partial \}$-Neumann operator; $q$-pseudoconvex domains; Lipschitz domains; Sobolev estimate; operator; -Neumann operator; -pseudoconvex domain; Lipschitz domain},
language = {eng},
number = {3},
pages = {721-731},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The $\bar\{\partial \}$-Neumann operator on Lipschitz $q$-pseudoconvex domains},
url = {http://eudml.org/doc/197031},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Saber, Sayed
TI - The $\bar{\partial }$-Neumann operator on Lipschitz $q$-pseudoconvex domains
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 721
EP - 731
AB - On a bounded $q$-pseudoconvex domain $\Omega $ in $\mathbb {C}^{n}$ with a Lipschitz boundary, we prove that the $\bar{\partial }$-Neumann operator $N$ satisfies a subelliptic $(1/2)$-estimate on $\Omega $ and $N$ can be extended as a bounded operator from Sobolev $(-1/2)$-spaces to Sobolev $(1/2)$-spaces.
LA - eng
KW - Sobolev estimate; $\bar{\partial }$ and $\bar{\partial }$-Neumann operator; $q$-pseudoconvex domains; Lipschitz domains; Sobolev estimate; operator; -Neumann operator; -pseudoconvex domain; Lipschitz domain
UR - http://eudml.org/doc/197031
ER -
References
top- Abdelkader, O., Saber, S., Estimates for the -Neumann operator on strictly pseudo-convex domain with Lipschitz boundary, J. Inequal. Pure Appl. Math. 5 10 (2004). (2004) MR2084879
- Abdelkader, O., Saber, S., The -Neumann operator on a strictly pseudo-convex domain with piecewise smooth boundary, Math. Slovaca 55 (2005), 317-328. (2005) MR2181009
- Ahn, H., Dieu, N. Q., The Donnelly-Fefferman Theorem on -pseudoconvex domains, Osaka J. Math. 46 (2009), 599-610. (2009) Zbl1214.32015MR2583320
- Boas, H. P., Straube, E. J., Global regularity of the -Neumann problem: A Survey of the -Sobolev Theory, Several Complex Variables, MSRI Publications 37 (1999), 79-111. (1999) MR1748601
- Boas, H. P., Straube, E. J., 10.1007/BF02571327, Math. Z. 206 (1991), 81-88. (1991) MR1086815DOI10.1007/BF02571327
- Bonami, A., Charpentier, P., Boundary values for the canonical solution to -equation and estimates, Preprint, Bordeaux (1990). (1990) MR1055987
- Catlin, D., 10.2307/1971347, Annals Math. 126 (1987), 131-191. (1987) Zbl0627.32013MR0898054DOI10.2307/1971347
- Chen, S. C., Shaw, M. C., Partial differential equations in several complex variables, AMS/IP Studies in Advanced Mathematics, vol. 19, American Mathematical Society, Providence, RI (2001). (2001) Zbl0963.32001MR1800297
- Ehsani, D., 10.4310/MRL.2003.v10.n4.a11, Math. Res. Letters 10 (2003), 523-533. (2003) MR1995791DOI10.4310/MRL.2003.v10.n4.a11
- Ehsani, D., 10.1512/iumj.2003.52.2261, Indiana Univ. Math. J. 52 (2003), 629-666. (2003) MR1986891DOI10.1512/iumj.2003.52.2261
- Engliš, M., 10.1512/iumj.2001.50.2085, Indiana Univ. Math. J. 50 (2001), 1593-1607. (2001) MR1889072DOI10.1512/iumj.2001.50.2085
- Evans, L. E., Gariepy, R. F., Measure theory and fine properties of functions, Stud. Adv. Math., CRC, Boca Raton (1992). (1992) Zbl0804.28001MR1158660
- Folland, G. B., Kohn, J. J., The Neumann problem for the Cauchy-Riemann complex, Ann. Math. Studies , Princeton University Press, New York, 1972. Zbl0247.35093MR0461588
- Grisvard, P., Elliptic problems in nonsmooth domains, Monogr. Stud. Math. Pitman, Boston 24 (1985). (1985) Zbl0695.35060MR0775683
- Henkin, G., Iordan, A., Kohn, J. J., Estimations sous-elliptiques pour le problème -Neumann dans un domaine strictement pseudoconvexe à frontière lisse par morceaux, C. R. Acad. Sci. Paris Sér. I Math. 323 (1996), 17-22. (1996) MR1401622
- Ho, L.-H., 10.1007/BF01459235, Math. Ann. 290 (1991), 3-18. (1991) Zbl0714.32006MR1107660DOI10.1007/BF01459235
- Hörmander, L., 10.1007/BF02391775, Acta Math. 113 (1965), 89-152. (1965) MR0179443DOI10.1007/BF02391775
- Kohn, J. J., Global regularity for on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273-292. (1973) Zbl0276.35071MR0344703
- Kohn, J. J., 10.2307/1970506, Ann. Math. 78 (1963), 112-148. (1963) MR0153030DOI10.2307/1970506
- Kohn, J. J., 10.2307/1970404, Ann. Math. 79 (1964), 450-472. (1964) MR0208200DOI10.2307/1970404
- Michel, J., Shaw, M., 10.1215/S0012-7094-98-09304-8, Duke Math. J. 93 (1998), 115-128. (1998) MR1620087DOI10.1215/S0012-7094-98-09304-8
- Michel, J., Shaw, M., 10.1215/S0012-7094-01-10832-6, Duke Math. J. 108 (2001), 421-447. (2001) MR1838658DOI10.1215/S0012-7094-01-10832-6
- Stein, E. M., Singular integrals and differentiability properties of functions, Princeton, Princeton Univ. Press Vol. 30 (1970). (1970) Zbl0207.13501MR0290095
- Straube, E., 10.4310/MRL.1997.v4.n4.a2, Math. Res. Lett. 4 (1997), 459-467. (1997) MR1470417DOI10.4310/MRL.1997.v4.n4.a2
- Zampieri, G., 10.1023/A:1001811318865, Compositio Math. 121 (2000), 155-162. (2000) MR1757879DOI10.1023/A:1001811318865
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.