The ¯ -Neumann operator on strongly pseudoconvex domain with piecewise smooth boundary

Osama Abdelkader; Sayed Saber

Mathematica Slovaca (2005)

  • Volume: 55, Issue: 3, page 317-328
  • ISSN: 0139-9918

How to cite

top

Abdelkader, Osama, and Saber, Sayed. "The $\overline{\partial }$-Neumann operator on strongly pseudoconvex domain with piecewise smooth boundary." Mathematica Slovaca 55.3 (2005): 317-328. <http://eudml.org/doc/32121>.

@article{Abdelkader2005,
author = {Abdelkader, Osama, Saber, Sayed},
journal = {Mathematica Slovaca},
keywords = {extension operator; Neumann operator; strongly pseudoconvex set; Sobolev space},
language = {eng},
number = {3},
pages = {317-328},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {The $\overline\{\partial \}$-Neumann operator on strongly pseudoconvex domain with piecewise smooth boundary},
url = {http://eudml.org/doc/32121},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Abdelkader, Osama
AU - Saber, Sayed
TI - The $\overline{\partial }$-Neumann operator on strongly pseudoconvex domain with piecewise smooth boundary
JO - Mathematica Slovaca
PY - 2005
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 55
IS - 3
SP - 317
EP - 328
LA - eng
KW - extension operator; Neumann operator; strongly pseudoconvex set; Sobolev space
UR - http://eudml.org/doc/32121
ER -

References

top
  1. BOAS H. P.-STRAUBE E. J., Equivalence of regularity for the Bergman projection and the ¯ -Neumann operator, Manuscripta Math. 67 (1990), 25-33. (1990) MR1037994
  2. BOAS H. P.-STRAUBE E. J., Sobolev estimates for the ¯ -Neumann operator on domains in Cn admitting a defining function that is plurisubharmonic on the boundary, Math. Z. 206 (1991), 81-88. (1991) MR1086815
  3. BOAS H. P.-STRAUBE E. J., Global regularity of the ¯ -Neumann problem: A Survey of the L 2 -Sobolev theory, In: Several Complex Variables (M. Schneider et al., eds.), Math. Sci. Res. Inst. Publ. 37, Cambridge University Press, Cambridge, 1999, pp. 79-111. (1999) MR1748601
  4. BONAMI A.-CHARPENTIER P., [unknown], Preprint, Bordeaux, 1990. (1990) MR1055987
  5. CHEN S.-C-SHAW M.-C, Partial Differential Equations in Several Complex Variables, Stud. Adv. Math. 19, AMS-International Press, Providence, RI, 2001. (19,) MR1800297
  6. EHSANI D., Analysis of the ¯ -Neumann problem along a straight edge, Preprint Math. CV/0309169. Zbl1057.32015MR2091680
  7. EHSANI D., Solution of the d-bar-Neumann problem on a bi-disc, Math. Res. Lett. 10 (2003), 523-533. MR1995791
  8. EHSANI D., Solution of the d-bar-Neumann problem on a non-smooth domain, Indiana Univ. Math. J. 52 (2003), 629-666. MR1986891
  9. ENGLIŠ M., Pseudolocal estimates for ¯ on general pseudoconvex domains, Indiana Univ. Math. J. 50 (2001), 1593-1607. Zbl1044.32029MR1889072
  10. FOLLAND G. B.-KOHN J. J., The Neumann Problem for the Cauchy-Riemann Complex, Princeton University Press, Princeton, 1972. (1972) Zbl0247.35093MR0461588
  11. GRISVARD P., Elliptic Problems in Nonsmooth Domains, Monogr. and Stud, in Math. 24. Pitman Advanced Publishing Program, Pitman Publishing Inc., Boston-London-Melbourne, 1985. (1985) Zbl0695.35060MR0775683
  12. HENKIN G.-IORDAN A.-KOHN J. J., Estimations sous-elliptiques pour le problem ¯ -Neumann dans un domaine strictement pseudoconvexe a frontiere lisse par morceaux, C. R. Acad. Sci. Paris Ser. I Math. 323 (1996), 17-22. (1996) MR1401622
  13. HÖRMANDER L., L 2 -estimates and existence theorems for the ¯ -operator, Acta Math. 113 (1965), 89-152. (1965) Zbl0158.11002MR0179443
  14. KOHN J. J., Harmonic integrals on strongly pseudo-convex manifolds I, Ann. Math. (2) 78 (1963), 112-148. (1963) Zbl0161.09302MR0153030
  15. KOHN J. J., Global regularity for ¯ on weakly pseudoconvex manifolds, Trans. Amer. Math. Soc 181 (1973), 273-292. (1973) MR0344703
  16. KOHN J. J., Subellipticity of the ¯ -Neumann problem on pseudoconvex domains: Sufficient conditions, Acta Math. 142 (1979), 79-122. (1979) MR0512213
  17. KOHN J. J., A survey of the ¯ -Neumann problem, In: Complex Analysis of Several Variables (Yum-Tong Siu, ed.), Proc Sympos. Pure Math. 41, Amer. Math. Soc, Providence, RI, 1984, pp. 137-145. (1984) MR0740877
  18. KRANTZ S. G., Partial Differential Equations and Complex Analysis, CRC Press, Boca Raton, 1992. (1992) Zbl0852.35001MR1207812
  19. MICHEL J.-SHAW M.-C., Subelliptic estimates for the ¯ -Neumann operator on piecewise smooth strictly pseudoconvex domains, Duke Math. J. 93 (1998), 115-128. (1998) Zbl0953.32027MR1620087
  20. MICHEL J.-SHAW M.-C, The ¯ -Neumann operator on Lipschitz pseudoconvex domains with plurisubharmonic defining functions, Duke Math. J. 108 (2001), 421-447. Zbl1020.32030MR1838658
  21. SHAW M.-C., Local existence theorems with estimates for ¯ b on weakly pseudo-convex C R manifolds, Math. Ann. 294 (1992), 677-700. (1992) MR1190451
  22. STEIN E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Math. Ser. 30, Princeton Univ. Press, Princeton, NJ, 1970. (1970) Zbl0207.13501MR0290095
  23. STRAUBE E., Plurisubharmonic functions and subellipticity of the ¯ -Neumann problem on nonsmooth domains, Math. Res. Lett. 4 (1997), 459-467. (1997) MR1470417

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.