Some oscillation criteria for the second-order linear delay differential equation

Zdeněk Opluštil; Jiří Šremr

Mathematica Bohemica (2011)

  • Volume: 136, Issue: 2, page 195-204
  • ISSN: 0862-7959

Abstract

top
Some Wintner and Nehari type oscillation criteria are established for the second-order linear delay differential equation.

How to cite

top

Opluštil, Zdeněk, and Šremr, Jiří. "Some oscillation criteria for the second-order linear delay differential equation." Mathematica Bohemica 136.2 (2011): 195-204. <http://eudml.org/doc/197041>.

@article{Opluštil2011,
abstract = {Some Wintner and Nehari type oscillation criteria are established for the second-order linear delay differential equation.},
author = {Opluštil, Zdeněk, Šremr, Jiří},
journal = {Mathematica Bohemica},
keywords = {second-order linear differential equation with a delay; oscillatory solution; second-order linear differential equation with delay; oscillatory solution},
language = {eng},
number = {2},
pages = {195-204},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some oscillation criteria for the second-order linear delay differential equation},
url = {http://eudml.org/doc/197041},
volume = {136},
year = {2011},
}

TY - JOUR
AU - Opluštil, Zdeněk
AU - Šremr, Jiří
TI - Some oscillation criteria for the second-order linear delay differential equation
JO - Mathematica Bohemica
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 136
IS - 2
SP - 195
EP - 204
AB - Some Wintner and Nehari type oscillation criteria are established for the second-order linear delay differential equation.
LA - eng
KW - second-order linear differential equation with a delay; oscillatory solution; second-order linear differential equation with delay; oscillatory solution
UR - http://eudml.org/doc/197041
ER -

References

top
  1. Fite, W. B., 10.1090/S0002-9947-1918-1501107-2, Trans. Amer. Math. Soc. 19 (1918), 341-352 6.0702.02. (1918) MR1501107DOI10.1090/S0002-9947-1918-1501107-2
  2. Došlý, O., Řehák, P., Half-linear Differential Equations, North-Holland Mathematics Studies 202, Elsevier, Amsterdam (2005). (2005) Zbl1090.34001MR2158903
  3. Hartman, P., Ordinary Differential Equations, John Wiley, New York (1964). (1964) Zbl0125.32102MR0171038
  4. Hille, E., 10.1090/S0002-9947-1948-0027925-7, Trans. Amer. Math. Soc. 64 (1948), 234-252. (1948) Zbl0031.35402MR0027925DOI10.1090/S0002-9947-1948-0027925-7
  5. Kandelaki, N., Lomtatidze, A., Ugulava, D., 10.1515/GMJ.2000.329, Georgian Math. J. 7 (2000), 329-346. (2000) MR1779555DOI10.1515/GMJ.2000.329
  6. Koplatadze, R., 10.1016/0022-247X(73)90127-3, J. Math. Anal. Appl. 42 (1973), 148-157. (1973) Zbl0255.34069MR0322313DOI10.1016/0022-247X(73)90127-3
  7. Koplatadze, R., Oscillation criteria for solutions of second order differential inequalities and equations with retarded argument, Tr. Inst. Prikl. Mat. Im. I. N. Vekua 17 (1986), 104-121 Russian. (1986) Zbl0645.34027MR0853276
  8. Müller-Pfeiffer, E., 10.1002/mana.19800960116, Math. Nachr. 96 (1980), 185-194. (1980) MR0600809DOI10.1002/mana.19800960116
  9. Myshkis, A. D., Linear Differential Equations with Retarded Argument, Nauka, Moskva (1972), Russian. (1972) Zbl0261.34040MR0352648
  10. Nehari, Z., 10.1090/S0002-9947-1957-0087816-8, Trans. Amer. Math. Soc. 85 (1957), 428-445. (1957) Zbl0078.07602MR0087816DOI10.1090/S0002-9947-1957-0087816-8
  11. Opluštil, Z., Pospíšil, Z., An oscillation criterion for a dynamic Sturm-Liouville equation, New progress in difference equations, Proceedings of the 6th International Conference on Difference Equations (2004), 317-324. (2004) MR2092567
  12. Partsvania, N., 10.1007/BF02259985, Georgian Math. J. 3 (1996), 571-582. (1996) Zbl0868.34054MR1419836DOI10.1007/BF02259985
  13. Partsvania, N., On oscillatory and monote solutions of two-dimensional differential systems with deviated arguments, Ph.D. Thesis, A. Razmadze Mathematical Institute of the Georgian Academy of Sciences, Tbilisi (1999). (1999) 
  14. Partsvania, N., On the oscillation of solutions od two-dimensional linear differential systems with deviated arguments, Mem. Differential Equations Math. Phys. 13 (1998), 148-149. (1998) MR1632394
  15. Řehák, P., Half-linear dynamic equations on time scales: IVP and oscillatory properties, Nonlinear Funct. Anal. Appl. 7 (2002), 361-403. (2002) Zbl1037.34002MR1946469
  16. Řehák, P., 10.1006/jmaa.2000.7124, J. Math. Anal. Appl. 252 (2000), 813-827. (2000) MR1800179DOI10.1006/jmaa.2000.7124
  17. Swanson, C. A., Comparison and Oscillation Theory of Linear Differential Equations, Academic Press, New York (1968). (1968) Zbl0191.09904MR0463570
  18. Willett, D., 10.1016/0001-8708(69)90011-5, Adv. Math. 3 (1969), 594-623. (1969) Zbl0188.40101MR0280800DOI10.1016/0001-8708(69)90011-5
  19. Wintner, A., 10.2307/2372182, Amer. J. Math. 73 (1951), 368-380. (1951) MR0042005DOI10.2307/2372182

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.