On the maximal operator of Walsh-Kaczmarz-Fejér means

Ushangi Goginava; Károly Nagy

Czechoslovak Mathematical Journal (2011)

  • Volume: 61, Issue: 3, page 673-686
  • ISSN: 0011-4642

Abstract

top
In this paper we prove that the maximal operator σ ˜ κ , * f : = sup n | σ n κ f | log 2 ( n + 1 ) , where σ n κ f is the n -th Fejér mean of the Walsh-Kaczmarz-Fourier series, is bounded from the Hardy space H 1 / 2 ( G ) to the space L 1 / 2 ( G ) .

How to cite

top

Goginava, Ushangi, and Nagy, Károly. "On the maximal operator of Walsh-Kaczmarz-Fejér means." Czechoslovak Mathematical Journal 61.3 (2011): 673-686. <http://eudml.org/doc/197059>.

@article{Goginava2011,
abstract = {In this paper we prove that the maximal operator \[\tilde\{\sigma \}^\{\kappa ,*\}f:=\sup \_\{n\in \{\mathbb \{P\}\}\}\frac\{|\{\sigma \}\_n^\kappa f|\}\{\log ^\{2\}(n+1)\},\] where $\{\sigma \}_n^\kappa f$ is the $n$-th Fejér mean of the Walsh-Kaczmarz-Fourier series, is bounded from the Hardy space $H_\{1/2\}( G) $ to the space $L_\{1/2\}( G).$},
author = {Goginava, Ushangi, Nagy, Károly},
journal = {Czechoslovak Mathematical Journal},
keywords = {Walsh-Kaczmarz system; Fejér means; maximal operator; Walsh-Kaczmarz system; Fejér mean; maximal operator},
language = {eng},
number = {3},
pages = {673-686},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the maximal operator of Walsh-Kaczmarz-Fejér means},
url = {http://eudml.org/doc/197059},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Goginava, Ushangi
AU - Nagy, Károly
TI - On the maximal operator of Walsh-Kaczmarz-Fejér means
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 3
SP - 673
EP - 686
AB - In this paper we prove that the maximal operator \[\tilde{\sigma }^{\kappa ,*}f:=\sup _{n\in {\mathbb {P}}}\frac{|{\sigma }_n^\kappa f|}{\log ^{2}(n+1)},\] where ${\sigma }_n^\kappa f$ is the $n$-th Fejér mean of the Walsh-Kaczmarz-Fourier series, is bounded from the Hardy space $H_{1/2}( G) $ to the space $L_{1/2}( G).$
LA - eng
KW - Walsh-Kaczmarz system; Fejér means; maximal operator; Walsh-Kaczmarz system; Fejér mean; maximal operator
UR - http://eudml.org/doc/197059
ER -

References

top
  1. Agaev, G. N., Vilenkin, N. Ya., Dzhafarli, G. M., Rubinshtein, A. I., Multiplicative systems of functions and harmonic analysis on 0-dimensional groups, ``ELM'' Baku 180 p (1981), Russian. (1981) 
  2. Fine, J., 10.1073/pnas.41.8.588, Proc. Nat. Acad. Sci. USA 41 (1955), 558-591. (1955) Zbl0065.05303MR0070757DOI10.1073/pnas.41.8.588
  3. Fujii, N. J., Cesàro summability of Walsh-Fourier series, Proc. Amer. Math. Soc. 77 (1979), 111-116. (1979) 
  4. Gát, G., 10.4064/sm-130-2-135-148, Studia Math. 130 (1998), 135-148. (1998) Zbl0905.42016MR1623340DOI10.4064/sm-130-2-135-148
  5. Gát, G., Goginava, U., Nagy, K., On the Marcinkiewicz-Fejér means of double Fourier series with respect to the Walsh-Kaczmarz system, Studia Sci. Math. Hungarica 46 (2009), 399-421. (2009) MR2657025
  6. Goginava, U., The maximal operator of the Fejér means of the character system of the p -series field in the Kaczmarz rearrangement, Publ. Math. Debrecen 71 (2007), 43-55. (2007) Zbl1136.42024MR2340033
  7. Goginava, U., 10.1007/s10474-007-5268-6, Acta Math. Hungar. 115 (2007), 333-340. (2007) Zbl1174.42336MR2327986DOI10.1007/s10474-007-5268-6
  8. Goginava, U., Maximal operators of Fejér-Walsh means, Acta Sci. Math. (Szeged) 74 (2008), 615-624. (2008) Zbl1199.42127MR2487936
  9. Goginava, U., The maximal operator of the Marcinkiewicz-Fejér means of the d -dimensional Walsh-Fourier series, East J. Approx. 12 (2006), 295-302. (2006) MR2252557
  10. Schipp, F., Wade, W. R., Simon, P., Pál, J., Walsh Series. An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol-New York (1990). (1990) MR1117682
  11. Schipp, F., Certain rearrengements of series in the Walsh series, Mat. Zametki 18 (1975), 193-201. (1975) MR0390633
  12. Schipp, F., 10.1007/BF02079908, Anal. Math. 2 (1976), 65-76. (1976) Zbl0343.42009MR0415190DOI10.1007/BF02079908
  13. Simon, P., 10.1007/s006050070004, Monatsh. Math. 131 (2000), 321-334. (2000) MR1813992DOI10.1007/s006050070004
  14. Simon, P., 10.1006/jath.2000.3488, J. Approx. Theory 106 (2000), 249-261. (2000) Zbl0987.42021MR1788275DOI10.1006/jath.2000.3488
  15. Skvortsov, V. A., 10.1007/BF02350811, Analysis Math. 7 (1981), 141-150. (1981) Zbl0472.42014MR0633073DOI10.1007/BF02350811
  16. Šneider, A. A., On series with respect to the Walsh functions with monotone coefficients, Izv. Akad. Nauk SSSR Ser. Math. 12 (1948), 179-192. (1948) MR0025605
  17. Yano, S. H., 10.2748/tmj/1178245527, Tohoku Math. J. 3 (1951), 223-242. (1951) MR0045236DOI10.2748/tmj/1178245527
  18. Young, W. S., 10.1090/S0002-9939-1974-0350310-6, Proc. Amer. Math. Soc. 44 (1974), 353-358. (1974) MR0350310DOI10.1090/S0002-9939-1974-0350310-6
  19. Weisz, F., Martingale Hardy spaces and their applications in Fourier analysis, Springer-Verlang, Berlin (1994). (1994) Zbl0796.60049MR1320508
  20. Weisz, F., Summability of multi-dimensional Fourier series and Hardy space, Kluwer Academic, Dordrecht (2002). (2002) MR2009144
  21. Weisz, F., 10.1007/BF02205221, Anal. Math. 22 (1996), 229-242. (1996) Zbl0866.42020MR1627638DOI10.1007/BF02205221
  22. Weisz, F., 10.1023/B:AMHU.0000028241.87331.c5, Acta Math. Hungar. 103 (2004), 139-176. (2004) Zbl1060.42021MR2047878DOI10.1023/B:AMHU.0000028241.87331.c5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.