Page 1 Next

Displaying 1 – 20 of 259

Showing per page

( H p , L p ) -type inequalities for the two-dimensional dyadic derivative

Ferenc Weisz (1996)

Studia Mathematica

It is shown that the restricted maximal operator of the two-dimensional dyadic derivative of the dyadic integral is bounded from the two-dimensional dyadic Hardy-Lorentz space H p , q to L p , q (2/3 < p < ∞, 0 < q ≤ ∞) and is of weak type ( L 1 , L 1 ) . As a consequence we show that the dyadic integral of a ∞ function f L 1 is dyadically differentiable and its derivative is f a.e.

A note on certain partial sum operators

Marek Bożejko, Gero Fendler (2006)

Banach Center Publications

We show that for the t-deformed semicircle measure, where 1/2 < t ≤ 1, the expansions of L p functions with respect to the associated orthonormal polynomials converge in norm when 3/2 < p < 3 and do not converge when 1 ≤ p < 3/2 or 3 < p. From this we conclude that natural expansions in the non-commutative L p spaces of free group factors and of free commutation relations do not converge for 1 ≤ p < 3/2 or 3 < p.

A remark on the multipliers of the Haar basis of L¹[0,1]

H. M. Wark (2015)

Studia Mathematica

A proof of a necessary and sufficient condition for a sequence to be a multiplier of the normalized Haar basis of L¹[0,1] is given. This proof depends only on the most elementary properties of this system and is an alternative proof to that recently found by Semenov & Uksusov (2012). Additionally, representations are given, which use stochastic processes, of this multiplier norm and of related multiplier norms.

A transplantation theorem for ultraspherical polynomials at critical index

J. J. Guadalupe, V. I. Kolyada (2001)

Studia Mathematica

We investigate the behaviour of Fourier coefficients with respect to the system of ultraspherical polynomials. This leads us to the study of the “boundary” Lorentz space λ corresponding to the left endpoint of the mean convergence interval. The ultraspherical coefficients c ( λ ) ( f ) of λ -functions turn out to behave like the Fourier coefficients of functions in the real Hardy space ReH¹. Namely, we prove that for any f λ the series n = 1 c ( λ ) ( f ) c o s n θ is the Fourier series of some function φ ∈ ReH¹ with | | φ | | R e H ¹ c | | f | | λ .

A uniform estimate for quartile operators.

Christoph Thiele (2002)

Revista Matemática Iberoamericana

There is a one parameter family of bilinear Hilbert transforms. Recently, some progress has been made to prove Lp estimates for these operators uniformly in the parameter. In the current article we present some of these techniques in a simplified model...

Currently displaying 1 – 20 of 259

Page 1 Next