A ( α )-Stable Linear Multistep Methods for Stiff IVPs in ODEs

R. I. Okuonghae; M. N. O. Ikhile

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2011)

  • Volume: 50, Issue: 1, page 73-90
  • ISSN: 0231-9721

Abstract

top
In this paper, a class of A( α )-stable linear multistep formulas for stiff initial value problems (IVPs) in ordinary differential equations (ODEs) is developed. The boundary locus of the methods shows that the schemes are A-stable for step number k 3 and stiffly stable for k = 4 , 5 and 6 . Some numerical results are reported to illustrate the method.

How to cite

top

Okuonghae, R. I., and Ikhile, M. N. O.. "A ($\alpha $)-Stable Linear Multistep Methods for Stiff IVPs in ODEs." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 50.1 (2011): 73-90. <http://eudml.org/doc/197074>.

@article{Okuonghae2011,
abstract = {In this paper, a class of A($\alpha $)-stable linear multistep formulas for stiff initial value problems (IVPs) in ordinary differential equations (ODEs) is developed. The boundary locus of the methods shows that the schemes are A-stable for step number $k\le 3$ and stiffly stable for $k=4, 5$ and $6$. Some numerical results are reported to illustrate the method.},
author = {Okuonghae, R. I., Ikhile, M. N. O.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {second derivative method; collocation and interpolation; initial value problem; stiff stability; boundary locus; second derivative method; collocation and interpolation; initial value problem; stiff stability; boundary locus; stiff initial value problems},
language = {eng},
number = {1},
pages = {73-90},
publisher = {Palacký University Olomouc},
title = {A ($\alpha $)-Stable Linear Multistep Methods for Stiff IVPs in ODEs},
url = {http://eudml.org/doc/197074},
volume = {50},
year = {2011},
}

TY - JOUR
AU - Okuonghae, R. I.
AU - Ikhile, M. N. O.
TI - A ($\alpha $)-Stable Linear Multistep Methods for Stiff IVPs in ODEs
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2011
PB - Palacký University Olomouc
VL - 50
IS - 1
SP - 73
EP - 90
AB - In this paper, a class of A($\alpha $)-stable linear multistep formulas for stiff initial value problems (IVPs) in ordinary differential equations (ODEs) is developed. The boundary locus of the methods shows that the schemes are A-stable for step number $k\le 3$ and stiffly stable for $k=4, 5$ and $6$. Some numerical results are reported to illustrate the method.
LA - eng
KW - second derivative method; collocation and interpolation; initial value problem; stiff stability; boundary locus; second derivative method; collocation and interpolation; initial value problem; stiff stability; boundary locus; stiff initial value problems
UR - http://eudml.org/doc/197074
ER -

References

top
  1. Butcher, J. C., The Numerical Analysis of Ordinary Differential Equation: Runge Kutta and General Linear Methods, Wiley, Chichester, 1987. (1987) MR0878564
  2. Butcher, J. C., High Order A-stable Numerical Methods for Stiff Problems, Journal of Scientific Computing 25 (2005), 51–66. (2005) Zbl1203.65106MR2231942
  3. Butcher, J. C., Hojjati, G., 10.1007/s11075-005-0413-1, Numer. Algorithms 40 (2005), 415–429. (2005) Zbl1084.65069MR2191975DOI10.1007/s11075-005-0413-1
  4. Butcher, J. C., Forty-five years of A-stability., In: Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics 2008. AIP Conference Proceedings 1048 (2008). (2008) MR2598780
  5. Butcher, J. C., Numerical Methods for Ordinary Differential Equations, sec. edi., Wiley, Chichester, 2008. (2008) Zbl1167.65041MR2401398
  6. Butcher, J. C., 10.1016/j.matcom.2007.02.006, Mathematics and Computers in Simulation 79 (2009), 1834–1845. (2009) Zbl1159.65333MR2494513DOI10.1016/j.matcom.2007.02.006
  7. Butcher, J. C., 10.1007/s11075-009-9285-0, Numerical Algorithms 53 (2010), 153–170. (2010) Zbl1184.65072MR2600925DOI10.1007/s11075-009-9285-0
  8. Dahlquist, G., 10.1007/BF01963532, BIT 3 (1963), 27–43. (1963) Zbl0123.11703MR0170477DOI10.1007/BF01963532
  9. Enright, W. H., 10.1137/0711029, SIAM J. Num. Anal. 11 (1974), 321–331. (1974) MR0351083DOI10.1137/0711029
  10. Enright, W. H., 10.1016/S0377-0427(00)00466-0, J. Comput. Appl. Math. 125 (2000), 159–170. (2000) Zbl0982.65078MR1803189DOI10.1016/S0377-0427(00)00466-0
  11. Enright, W. H., Hull, T. E., Linberg, B., 10.1007/BF01932994, BIT 15 (1975), 1–48. (1975) DOI10.1007/BF01932994
  12. Fatunla, S. O., Numerical Methods for Initial Value Problems in ODEs, Academic Press, New York, 1978. (1978) 
  13. Gear, C. W., The automatic integration of stiff ODEs, In: Morrell, A.J.H. (ed.) Information processing 68: Proc. IFIP Congress, Edinurgh, 1968 Nort-Holland, Amsterdam, 1968, 187–193. (1968) MR0260180
  14. Gear, C. W., 10.1145/362566.362571, Comm. ACM 14 (1971), 176–179. (1971) MR0388778DOI10.1145/362566.362571
  15. Hairer, E., Wanner, G., Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1996. (1996) Zbl0859.65067MR1439506
  16. Higham, J. D., Higham, J. N., Matlab Guide, SIAM, Philadelphia, 2000. (2000) Zbl0953.68642MR1787308
  17. Ikhile, M. N. O., Okuonghae, R. I., Stiffly stable continuous extension of second derivative LMM with an off-step point for IVPs in ODEs, J. Nig. Assoc. Math. Phys. 11 (2007), 175–190. (2007) 
  18. Lambert, J. D., Numerical Methods for Ordinary Differential Systems. The Initial Value Problems, Wiley, Chichester, 1991. (1991) MR1127425
  19. Lambert, J. D., Computational Methods for Ordinary Differential Systems. The Initial Value Problems, Wiley, Chichester, 1973. (1973) MR0423815
  20. Okuonghae, R. I., Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs, Ph.D. Thesis, Dept. of Maths. University of Benin, Benin City. Nigeria, 2008. (2008) 
  21. Selva, M., Arevalo, C., Fuherer, C., 10.1016/S0168-9274(01)00138-6, Appl. Numer. Math. 42 (2002), 5–16. (2002) MR1921325DOI10.1016/S0168-9274(01)00138-6
  22. Widlund, O., 10.1007/BF01934126, BIT 7 (1967), 65–70. (1967) Zbl0178.18502MR0215533DOI10.1007/BF01934126

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.