A ()-Stable Linear Multistep Methods for Stiff IVPs in ODEs
R. I. Okuonghae; M. N. O. Ikhile
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2011)
- Volume: 50, Issue: 1, page 73-90
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topOkuonghae, R. I., and Ikhile, M. N. O.. "A ($\alpha $)-Stable Linear Multistep Methods for Stiff IVPs in ODEs." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 50.1 (2011): 73-90. <http://eudml.org/doc/197074>.
@article{Okuonghae2011,
abstract = {In this paper, a class of A($\alpha $)-stable linear multistep formulas for stiff initial value problems (IVPs) in ordinary differential equations (ODEs) is developed. The boundary locus of the methods shows that the schemes are A-stable for step number $k\le 3$ and stiffly stable for $k=4, 5$ and $6$. Some numerical results are reported to illustrate the method.},
author = {Okuonghae, R. I., Ikhile, M. N. O.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {second derivative method; collocation and interpolation; initial value problem; stiff stability; boundary locus; second derivative method; collocation and interpolation; initial value problem; stiff stability; boundary locus; stiff initial value problems},
language = {eng},
number = {1},
pages = {73-90},
publisher = {Palacký University Olomouc},
title = {A ($\alpha $)-Stable Linear Multistep Methods for Stiff IVPs in ODEs},
url = {http://eudml.org/doc/197074},
volume = {50},
year = {2011},
}
TY - JOUR
AU - Okuonghae, R. I.
AU - Ikhile, M. N. O.
TI - A ($\alpha $)-Stable Linear Multistep Methods for Stiff IVPs in ODEs
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2011
PB - Palacký University Olomouc
VL - 50
IS - 1
SP - 73
EP - 90
AB - In this paper, a class of A($\alpha $)-stable linear multistep formulas for stiff initial value problems (IVPs) in ordinary differential equations (ODEs) is developed. The boundary locus of the methods shows that the schemes are A-stable for step number $k\le 3$ and stiffly stable for $k=4, 5$ and $6$. Some numerical results are reported to illustrate the method.
LA - eng
KW - second derivative method; collocation and interpolation; initial value problem; stiff stability; boundary locus; second derivative method; collocation and interpolation; initial value problem; stiff stability; boundary locus; stiff initial value problems
UR - http://eudml.org/doc/197074
ER -
References
top- Butcher, J. C., The Numerical Analysis of Ordinary Differential Equation: Runge Kutta and General Linear Methods, Wiley, Chichester, 1987. (1987) MR0878564
- Butcher, J. C., High Order A-stable Numerical Methods for Stiff Problems, Journal of Scientific Computing 25 (2005), 51–66. (2005) Zbl1203.65106MR2231942
- Butcher, J. C., Hojjati, G., 10.1007/s11075-005-0413-1, Numer. Algorithms 40 (2005), 415–429. (2005) Zbl1084.65069MR2191975DOI10.1007/s11075-005-0413-1
- Butcher, J. C., Forty-five years of A-stability., In: Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics 2008. AIP Conference Proceedings 1048 (2008). (2008) MR2598780
- Butcher, J. C., Numerical Methods for Ordinary Differential Equations, sec. edi., Wiley, Chichester, 2008. (2008) Zbl1167.65041MR2401398
- Butcher, J. C., 10.1016/j.matcom.2007.02.006, Mathematics and Computers in Simulation 79 (2009), 1834–1845. (2009) Zbl1159.65333MR2494513DOI10.1016/j.matcom.2007.02.006
- Butcher, J. C., 10.1007/s11075-009-9285-0, Numerical Algorithms 53 (2010), 153–170. (2010) Zbl1184.65072MR2600925DOI10.1007/s11075-009-9285-0
- Dahlquist, G., 10.1007/BF01963532, BIT 3 (1963), 27–43. (1963) Zbl0123.11703MR0170477DOI10.1007/BF01963532
- Enright, W. H., 10.1137/0711029, SIAM J. Num. Anal. 11 (1974), 321–331. (1974) MR0351083DOI10.1137/0711029
- Enright, W. H., 10.1016/S0377-0427(00)00466-0, J. Comput. Appl. Math. 125 (2000), 159–170. (2000) Zbl0982.65078MR1803189DOI10.1016/S0377-0427(00)00466-0
- Enright, W. H., Hull, T. E., Linberg, B., 10.1007/BF01932994, BIT 15 (1975), 1–48. (1975) DOI10.1007/BF01932994
- Fatunla, S. O., Numerical Methods for Initial Value Problems in ODEs, Academic Press, New York, 1978. (1978)
- Gear, C. W., The automatic integration of stiff ODEs, In: Morrell, A.J.H. (ed.) Information processing 68: Proc. IFIP Congress, Edinurgh, 1968 Nort-Holland, Amsterdam, 1968, 187–193. (1968) MR0260180
- Gear, C. W., 10.1145/362566.362571, Comm. ACM 14 (1971), 176–179. (1971) MR0388778DOI10.1145/362566.362571
- Hairer, E., Wanner, G., Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1996. (1996) Zbl0859.65067MR1439506
- Higham, J. D., Higham, J. N., Matlab Guide, SIAM, Philadelphia, 2000. (2000) Zbl0953.68642MR1787308
- Ikhile, M. N. O., Okuonghae, R. I., Stiffly stable continuous extension of second derivative LMM with an off-step point for IVPs in ODEs, J. Nig. Assoc. Math. Phys. 11 (2007), 175–190. (2007)
- Lambert, J. D., Numerical Methods for Ordinary Differential Systems. The Initial Value Problems, Wiley, Chichester, 1991. (1991) MR1127425
- Lambert, J. D., Computational Methods for Ordinary Differential Systems. The Initial Value Problems, Wiley, Chichester, 1973. (1973) MR0423815
- Okuonghae, R. I., Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs, Ph.D. Thesis, Dept. of Maths. University of Benin, Benin City. Nigeria, 2008. (2008)
- Selva, M., Arevalo, C., Fuherer, C., 10.1016/S0168-9274(01)00138-6, Appl. Numer. Math. 42 (2002), 5–16. (2002) MR1921325DOI10.1016/S0168-9274(01)00138-6
- Widlund, O., 10.1007/BF01934126, BIT 7 (1967), 65–70. (1967) Zbl0178.18502MR0215533DOI10.1007/BF01934126
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.