The Numerical Solution of Stiff IVPs in ODEs Using Modified Second Derivative BDF
R. I. Okuonghae; M. N. O. Ikhile
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2012)
- Volume: 51, Issue: 1, page 51-77
- ISSN: 0231-9721
Access Full Article
topAbstract
topHow to cite
topOkuonghae, R. I., and Ikhile, M. N. O.. "The Numerical Solution of Stiff IVPs in ODEs Using Modified Second Derivative BDF." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 51.1 (2012): 51-77. <http://eudml.org/doc/246147>.
@article{Okuonghae2012,
abstract = {This paper considers modified second derivative BDF (MSD-BDF) for the numerical solution of stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The methods are A$(\alpha )$-stable for step length $k\le 7$.},
author = {Okuonghae, R. I., Ikhile, M. N. O.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {second derivative BDF; collocation and interpolation; initial value problem; stiff stability; boundary locus; second derivative BDF; collocation; interpolation; initial value problem; stiff stability; boundary locus; numerical examples; multistep method; backward differentiation formulas (BDF)},
language = {eng},
number = {1},
pages = {51-77},
publisher = {Palacký University Olomouc},
title = {The Numerical Solution of Stiff IVPs in ODEs Using Modified Second Derivative BDF},
url = {http://eudml.org/doc/246147},
volume = {51},
year = {2012},
}
TY - JOUR
AU - Okuonghae, R. I.
AU - Ikhile, M. N. O.
TI - The Numerical Solution of Stiff IVPs in ODEs Using Modified Second Derivative BDF
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2012
PB - Palacký University Olomouc
VL - 51
IS - 1
SP - 51
EP - 77
AB - This paper considers modified second derivative BDF (MSD-BDF) for the numerical solution of stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The methods are A$(\alpha )$-stable for step length $k\le 7$.
LA - eng
KW - second derivative BDF; collocation and interpolation; initial value problem; stiff stability; boundary locus; second derivative BDF; collocation; interpolation; initial value problem; stiff stability; boundary locus; numerical examples; multistep method; backward differentiation formulas (BDF)
UR - http://eudml.org/doc/246147
ER -
References
top- Butcher, J. C., 10.1145/321250.321261, J. Assoc. Comput. Mach. 12 (1965), 124–135. (1965) Zbl0125.07102MR0178573DOI10.1145/321250.321261
- Butcher, J. C., The Numerical Analysis of Ordinary Differential Equation: Runge Kutta and General Linear Methods, Wiley, Chichester, 1987. (1987) MR0878564
- Butcher, J. C., Some new hybrid methods for IVPs, In: Cash, J.R., Gladwell, I. (eds) Computational Ordinary Differential Equations Clarendon Press, Oxford, 1992, 29–46. (1992) MR1387122
- Butcher, J. C., 10.1007/s10915-004-4632-8, Journal of Scientific Computing 25 (2005), 51–66. (2005) Zbl1203.65106MR2231942DOI10.1007/s10915-004-4632-8
- Butcher, J. C., Forty-five years of A-stability., In: Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics 2008. AIP Conference Proceedings 1048 (2008). (2008) MR2598780
- Butcher, J. C., Numerical Methods for Ordinary Differential Equations, sec. edi., Wiley, Chichester, 2008. (2008) Zbl1167.65041MR2401398
- Butcher, J. C., 10.1016/j.matcom.2007.02.006, Mathematics and Computers in Simulation 79 (2009), 1834–1845. (2009) Zbl1159.65333MR2494513DOI10.1016/j.matcom.2007.02.006
- Butcher, J. C., 10.1007/s11075-009-9285-0, Numerical Algorithms 53 (2010), 153–170. (2010) Zbl1184.65072MR2600925DOI10.1007/s11075-009-9285-0
- Butcher, J. C., Hojjati, G., 10.1007/s11075-005-0413-1, Numer. Algorithms 40 (2005), 415–429. (2005) Zbl1084.65069MR2191975DOI10.1007/s11075-005-0413-1
- Butcher, J. C., Rattenbury, N., 10.1016/j.apnum.2004.09.033, Appl. Numer. Math. 53 (2005), 165–181. (2005) Zbl1070.65059MR2128520DOI10.1016/j.apnum.2004.09.033
- Coleman, J. P., Duxbury, S. C., Mixed collocation methods for , Research Report NA-99/01, 1999 Dept. Math. Sci., University of Durham, J. Comput. Appl. (2000), 47–75. (2000) MR1806107
- Dahlquist, G., On stability and error analysis for stiff nonlinear problems. Part 1, Report No TRITA-NA-7508, Dept. of Information processing, Computer Science, Royal Inst. of Technology, Stockholm, 1975. (1975)
- Enright, W. H., 10.1137/0711029, SIAM J. Num. Anal. 11 (1974), 321–331. (1974) MR0351083DOI10.1137/0711029
- Enright, W. H., 10.1016/S0377-0427(00)00466-0, J. Comput. Appl. Math. 125 (2000), 159–170. (2000) Zbl0982.65078MR1803189DOI10.1016/S0377-0427(00)00466-0
- Enright, W. H., Hull, T. E., Linberg, B., 10.1007/BF01932994, BIT 15 (1975), 1–48. (1975) DOI10.1007/BF01932994
- Fatunla, S. O., Numerical Methods for Initial Value Problems in ODEs, Academic Press, New York, 1978. (1978)
- Forrington, C. V. D., 10.1093/comjnl/4.1.80, Comput. J. 4 (1961), 80–84. (1961) DOI10.1093/comjnl/4.1.80
- Gear, C. W., The automatic integration of stiff ODEs, In: Morrell, A.J.H. (ed.) Information processing 68: Proc. IFIP Congress, Edinurgh, 1968 Nort-Holland, Amsterdam, 1968, 187–193. (1968) MR0260180
- Gear, C. W., 10.1145/362566.362571, Comm. ACM 14 (1971), 176–179. (1971) MR0388778DOI10.1145/362566.362571
- Gragg, W. B., Stetter, H. J., 10.1145/321217.321223, J. Assoc. Comput. Mach. 11 (1964), 188–209. (1964) Zbl0168.13803MR0161476DOI10.1145/321217.321223
- Hairer, E., Wanner, G., Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1996. (1996) Zbl0859.65067MR1439506
- Higham, J. D., Higham, J. N., Matlab Guide, SIAM, Philadelphia, 2000. (2000) Zbl0953.68642MR1787308
- Ikhile, M. N. O., Okuonghae, R. I., Stiffly stable continuous extension of second derivative LMM with an off-step point for IVPs in ODEs, J. Nig. Assoc. Math. Phys. 11 (2007), 175–190. (2007)
- Kohfeld, J. J., Thompson, G. T., 10.1145/321371.321383, J. Assoc. Comput. Mach. 14 (1967), 155–166. (1967) Zbl0173.17906MR0242375DOI10.1145/321371.321383
- Lambert, J. D., Numerical Methods for Ordinary Differential Systems. The Initial Value Problems, Wiley, Chichester, 1991. (1991) MR1127425
- Lambert, J. D., Computational Methods for Ordinary Differential Systems. The Initial Value Problems, Wiley, Chichester, 1973. (1973)
- Okuonghae, R. I., Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs, Ph.D. Thesis, Dept. of Maths. University of Benin, Benin City. Nigeria, 2008. (2008)
- Okuonghae, R. I., A class of Continuous hybrid LMM for stiff IVPs in ODEs, Scientific Annals of AI. I. Cuza University of Iasi, (2010), Accepted for publication. (2010)
- Okuonghae, R. I., Ikhile, M. N. O., A continuous formulation of -stable second derivative linear multistep methods for stiff IVPs and ODEs, J. of Algorithms and Comp. Technology, (2011), Accepted for publication. (2011) MR2964215
- Okuonghae, R. I., Ikhile, M. N. O., -stable linear multistep methods for stiff IVPs and ODEs, Acta. Univ. Palacki. Olomuc., Fac. rer. nat., Math. 50 (2011), 73–90. (2011) MR2920700
- Selva, M., Arevalo, C., Fuherer, C., 10.1016/S0168-9274(01)00138-6, Appl. Numer. Math. 42 (2002), 5–16. (2002) MR1921325DOI10.1016/S0168-9274(01)00138-6
- Widlund, O., 10.1007/BF01934126, BIT 7 (1967), 65–70. (1967) Zbl0178.18502MR0215533DOI10.1007/BF01934126
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.