The Numerical Solution of Stiff IVPs in ODEs Using Modified Second Derivative BDF

R. I. Okuonghae; M. N. O. Ikhile

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2012)

  • Volume: 51, Issue: 1, page 51-77
  • ISSN: 0231-9721

Abstract

top
This paper considers modified second derivative BDF (MSD-BDF) for the numerical solution of stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The methods are A ( α ) -stable for step length k 7 .

How to cite

top

Okuonghae, R. I., and Ikhile, M. N. O.. "The Numerical Solution of Stiff IVPs in ODEs Using Modified Second Derivative BDF." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 51.1 (2012): 51-77. <http://eudml.org/doc/246147>.

@article{Okuonghae2012,
abstract = {This paper considers modified second derivative BDF (MSD-BDF) for the numerical solution of stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The methods are A$(\alpha )$-stable for step length $k\le 7$.},
author = {Okuonghae, R. I., Ikhile, M. N. O.},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {second derivative BDF; collocation and interpolation; initial value problem; stiff stability; boundary locus; second derivative BDF; collocation; interpolation; initial value problem; stiff stability; boundary locus; numerical examples; multistep method; backward differentiation formulas (BDF)},
language = {eng},
number = {1},
pages = {51-77},
publisher = {Palacký University Olomouc},
title = {The Numerical Solution of Stiff IVPs in ODEs Using Modified Second Derivative BDF},
url = {http://eudml.org/doc/246147},
volume = {51},
year = {2012},
}

TY - JOUR
AU - Okuonghae, R. I.
AU - Ikhile, M. N. O.
TI - The Numerical Solution of Stiff IVPs in ODEs Using Modified Second Derivative BDF
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2012
PB - Palacký University Olomouc
VL - 51
IS - 1
SP - 51
EP - 77
AB - This paper considers modified second derivative BDF (MSD-BDF) for the numerical solution of stiff initial value problems (IVPs) in ordinary differential equations (ODEs). The methods are A$(\alpha )$-stable for step length $k\le 7$.
LA - eng
KW - second derivative BDF; collocation and interpolation; initial value problem; stiff stability; boundary locus; second derivative BDF; collocation; interpolation; initial value problem; stiff stability; boundary locus; numerical examples; multistep method; backward differentiation formulas (BDF)
UR - http://eudml.org/doc/246147
ER -

References

top
  1. Butcher, J. C., 10.1145/321250.321261, J. Assoc. Comput. Mach. 12 (1965), 124–135. (1965) Zbl0125.07102MR0178573DOI10.1145/321250.321261
  2. Butcher, J. C., The Numerical Analysis of Ordinary Differential Equation: Runge Kutta and General Linear Methods, Wiley, Chichester, 1987. (1987) MR0878564
  3. Butcher, J. C., Some new hybrid methods for IVPs, In: Cash, J.R., Gladwell, I. (eds) Computational Ordinary Differential Equations Clarendon Press, Oxford, 1992, 29–46. (1992) MR1387122
  4. Butcher, J. C., 10.1007/s10915-004-4632-8, Journal of Scientific Computing 25 (2005), 51–66. (2005) Zbl1203.65106MR2231942DOI10.1007/s10915-004-4632-8
  5. Butcher, J. C., Forty-five years of A-stability., In: Numerical Analysis and Applied Mathematics: International Conference on Numerical Analysis and Applied Mathematics 2008. AIP Conference Proceedings 1048 (2008). (2008) MR2598780
  6. Butcher, J. C., Numerical Methods for Ordinary Differential Equations, sec. edi., Wiley, Chichester, 2008. (2008) Zbl1167.65041MR2401398
  7. Butcher, J. C., 10.1016/j.matcom.2007.02.006, Mathematics and Computers in Simulation 79 (2009), 1834–1845. (2009) Zbl1159.65333MR2494513DOI10.1016/j.matcom.2007.02.006
  8. Butcher, J. C., 10.1007/s11075-009-9285-0, Numerical Algorithms 53 (2010), 153–170. (2010) Zbl1184.65072MR2600925DOI10.1007/s11075-009-9285-0
  9. Butcher, J. C., Hojjati, G., 10.1007/s11075-005-0413-1, Numer. Algorithms 40 (2005), 415–429. (2005) Zbl1084.65069MR2191975DOI10.1007/s11075-005-0413-1
  10. Butcher, J. C., Rattenbury, N., 10.1016/j.apnum.2004.09.033, Appl. Numer. Math. 53 (2005), 165–181. (2005) Zbl1070.65059MR2128520DOI10.1016/j.apnum.2004.09.033
  11. Coleman, J. P., Duxbury, S. C., Mixed collocation methods for y ' ' = f ( x , y ) , Research Report NA-99/01, 1999 Dept. Math. Sci., University of Durham, J. Comput. Appl. (2000), 47–75. (2000) MR1806107
  12. Dahlquist, G., On stability and error analysis for stiff nonlinear problems. Part 1, Report No TRITA-NA-7508, Dept. of Information processing, Computer Science, Royal Inst. of Technology, Stockholm, 1975. (1975) 
  13. Enright, W. H., 10.1137/0711029, SIAM J. Num. Anal. 11 (1974), 321–331. (1974) MR0351083DOI10.1137/0711029
  14. Enright, W. H., 10.1016/S0377-0427(00)00466-0, J. Comput. Appl. Math. 125 (2000), 159–170. (2000) Zbl0982.65078MR1803189DOI10.1016/S0377-0427(00)00466-0
  15. Enright, W. H., Hull, T. E., Linberg, B., 10.1007/BF01932994, BIT 15 (1975), 1–48. (1975) DOI10.1007/BF01932994
  16. Fatunla, S. O., Numerical Methods for Initial Value Problems in ODEs, Academic Press, New York, 1978. (1978) 
  17. Forrington, C. V. D., 10.1093/comjnl/4.1.80, Comput. J. 4 (1961), 80–84. (1961) DOI10.1093/comjnl/4.1.80
  18. Gear, C. W., The automatic integration of stiff ODEs, In: Morrell, A.J.H. (ed.) Information processing 68: Proc. IFIP Congress, Edinurgh, 1968 Nort-Holland, Amsterdam, 1968, 187–193. (1968) MR0260180
  19. Gear, C. W., 10.1145/362566.362571, Comm. ACM 14 (1971), 176–179. (1971) MR0388778DOI10.1145/362566.362571
  20. Gragg, W. B., Stetter, H. J., 10.1145/321217.321223, J. Assoc. Comput. Mach. 11 (1964), 188–209. (1964) Zbl0168.13803MR0161476DOI10.1145/321217.321223
  21. Hairer, E., Wanner, G., Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1996. (1996) Zbl0859.65067MR1439506
  22. Higham, J. D., Higham, J. N., Matlab Guide, SIAM, Philadelphia, 2000. (2000) Zbl0953.68642MR1787308
  23. Ikhile, M. N. O., Okuonghae, R. I., Stiffly stable continuous extension of second derivative LMM with an off-step point for IVPs in ODEs, J. Nig. Assoc. Math. Phys. 11 (2007), 175–190. (2007) 
  24. Kohfeld, J. J., Thompson, G. T., 10.1145/321371.321383, J. Assoc. Comput. Mach. 14 (1967), 155–166. (1967) Zbl0173.17906MR0242375DOI10.1145/321371.321383
  25. Lambert, J. D., Numerical Methods for Ordinary Differential Systems. The Initial Value Problems, Wiley, Chichester, 1991. (1991) MR1127425
  26. Lambert, J. D., Computational Methods for Ordinary Differential Systems. The Initial Value Problems, Wiley, Chichester, 1973. (1973) 
  27. Okuonghae, R. I., Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs, Ph.D. Thesis, Dept. of Maths. University of Benin, Benin City. Nigeria, 2008. (2008) 
  28. Okuonghae, R. I., A class of Continuous hybrid LMM for stiff IVPs in ODEs, Scientific Annals of AI. I. Cuza University of Iasi, (2010), Accepted for publication. (2010) 
  29. Okuonghae, R. I., Ikhile, M. N. O., A continuous formulation of A ( α ) -stable second derivative linear multistep methods for stiff IVPs and ODEs, J. of Algorithms and Comp. Technology, (2011), Accepted for publication. (2011) MR2964215
  30. Okuonghae, R. I., Ikhile, M. N. O., A ( α ) -stable linear multistep methods for stiff IVPs and ODEs, Acta. Univ. Palacki. Olomuc., Fac. rer. nat., Math. 50 (2011), 73–90. (2011) MR2920700
  31. Selva, M., Arevalo, C., Fuherer, C., 10.1016/S0168-9274(01)00138-6, Appl. Numer. Math. 42 (2002), 5–16. (2002) MR1921325DOI10.1016/S0168-9274(01)00138-6
  32. Widlund, O., 10.1007/BF01934126, BIT 7 (1967), 65–70. (1967) Zbl0178.18502MR0215533DOI10.1007/BF01934126

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.