Uncertainty principles for the Weinstein transform
Czechoslovak Mathematical Journal (2011)
- Volume: 61, Issue: 4, page 941-974
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMejjaoli, Hatem, and Salhi, Makren. "Uncertainty principles for the Weinstein transform." Czechoslovak Mathematical Journal 61.4 (2011): 941-974. <http://eudml.org/doc/197119>.
@article{Mejjaoli2011,
abstract = {The Weinstein transform satisfies some uncertainty principles similar to the Euclidean Fourier transform. A generalization and a variant of Cowling-Price theorem, Miyachi's theorem, Beurling's theorem, and Donoho-Stark's uncertainty principle are obtained for the Weinstein transform.},
author = {Mejjaoli, Hatem, Salhi, Makren},
journal = {Czechoslovak Mathematical Journal},
keywords = {Weinstein transform; Hardy's type theorem; Cowling-Price's theorem; Beurling's theorem; Miyachi's theorem; Donoho-Stark's uncertainty principle; Weinstein transform; Hardy's type theorem; Cowling-Price's theorem; Beurling's theorem; Miyachi's theorem; Donoho-Stark's uncertainty principle},
language = {eng},
number = {4},
pages = {941-974},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Uncertainty principles for the Weinstein transform},
url = {http://eudml.org/doc/197119},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Mejjaoli, Hatem
AU - Salhi, Makren
TI - Uncertainty principles for the Weinstein transform
JO - Czechoslovak Mathematical Journal
PY - 2011
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 4
SP - 941
EP - 974
AB - The Weinstein transform satisfies some uncertainty principles similar to the Euclidean Fourier transform. A generalization and a variant of Cowling-Price theorem, Miyachi's theorem, Beurling's theorem, and Donoho-Stark's uncertainty principle are obtained for the Weinstein transform.
LA - eng
KW - Weinstein transform; Hardy's type theorem; Cowling-Price's theorem; Beurling's theorem; Miyachi's theorem; Donoho-Stark's uncertainty principle; Weinstein transform; Hardy's type theorem; Cowling-Price's theorem; Beurling's theorem; Miyachi's theorem; Donoho-Stark's uncertainty principle
UR - http://eudml.org/doc/197119
ER -
References
top- Nahia, Z. Ben, Salem, N. Ben, Spherical harmonics and applications associated with the Weinstein operator, Potential Theory---Proc. ICPT 94 J. Král et al. (1996), 235-241. (1996) MR1404710
- Nahia, Z. Ben, Salem, N. Ben, On a mean value property associated with the Weinstein operator, Potential Theory---Proc. ICPT 94 J. Král et al. (1996), 243-253. (1996) MR1404711
- Benedicks, M., 10.1016/0022-247X(85)90140-4, J. Math. Anal. Appl. 106 (1985), 180-183. (1985) Zbl0576.42016MR0780328DOI10.1016/0022-247X(85)90140-4
- Beurling, A., The Collected Works of Arne Beurling, Vol. 1, Vol. 2, L. Carleson, P. Malliavin, J. Neuberger, J. Wermen Birkhäuser Boston (1989). (1989) MR1057613
- Brelot, M., Equation de Weinstein et potentiels de Marcel Riesz, Lect. Notes Math. 681. Séminaire de Théorie de Potentiel Paris, No. 3 (1978), 18-38 French. (1978) Zbl0386.31007MR0521776
- Bonami, A., Demange, B., Jaming, P., Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Rev. Mat. Iberoam. 19 (2003), 22-35. (2003) MR1993414
- Cowling, M. G., Price, J. F., 10.1007/BFb0069174, Lect. Notes Math., Vol. 992 Springer Berlin (1983), 443-449. (1983) Zbl0516.43002MR0729369DOI10.1007/BFb0069174
- Daher, R., Kawazoe, T., Mejjaoli, H., 10.2969/jmsj/06120551, J. Math. Soc. Japan 61 (2009), 551-558. (2009) Zbl1235.43008MR2532900DOI10.2969/jmsj/06120551
- Donoho, D. L., Stark, P. B., 10.1137/0149053, SIAM J. Appl. Math. 49 (1989), 906-931. (1989) Zbl0689.42001MR0997928DOI10.1137/0149053
- Hardy, G. H., 10.1112/jlms/s1-8.3.227, J. Lond. Math. Soc. 8 (1933), 227-231. (1933) MR1574130DOI10.1112/jlms/s1-8.3.227
- Hörmander, L., 10.1007/BF02384339, Ark. Mat. 29 (1991), 237-240. (1991) MR1150375DOI10.1007/BF02384339
- Mejjaoli, H., Trimèche, K., An analogue of Hardy’s theorem and its -version for the Dunkl-Bessel transform, J. Concr. Appl. Math. 2 (2004), 397-417. (2004) MR2224912
- Mejjaoli, H., An analogue of Beurling-Hörmander's theorem for the Dunkl-Bessel transform, Fract. Calc. Appl. Anal. 9 (2006), 247-264. (2006) Zbl1210.44002MR2305441
- Mejjaoli, H., Trimèche, K., 10.1016/j.jmaa.2006.02.029, J. Math. Anal. Appl. 345 (2008), 593-606. (2008) MR2429159DOI10.1016/j.jmaa.2006.02.029
- Mejjaoli, H., 10.1016/j.na.2009.08.045, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 1121-1139. (2010) Zbl1185.35262MR2577514DOI10.1016/j.na.2009.08.045
- Mejjaoli, H., 10.1080/00036811.2010.495334, Appl. Anal. 89 (2010), 1645-1668. (2010) Zbl1204.35121MR2773341DOI10.1080/00036811.2010.495334
- Miyachi, A., A generalization of theorem of Hardy, Harmonic Analysis Seminar, Izunagaoka, Shizuoka-Ken, Japan 1997 44-51 ().
- Morgan, G. W., A note on Fourier transforms, J. Lond. Math. Soc. 9 (1934), 188-192. (1934) Zbl0009.24801MR1574180
- Parui, S., Sarkar, R. P., 10.2977/prims/1231263778, Publ. Res. Inst. Math. Sci. 44 (2008), 1027-1056. (2008) MR2477903DOI10.2977/prims/1231263778
- Pfannschmidt, C., 10.1002/mana.19961820114, Math. Nachr. 182 (1996), 317-327. (1996) Zbl0873.42005MR1419899DOI10.1002/mana.19961820114
- Ray, S. K., Sarkar, R. P., 10.1007/BF02829851, Proc. Indian Acad. Sci. (Math. Sci.) 114 (2004), 159-180. (2004) Zbl1059.22010MR2062397DOI10.1007/BF02829851
- Slepian, D., Pollak, H. O., 10.1002/j.1538-7305.1961.tb03976.x, Bell. System Tech. J. 40 (1961), 43-63. (1961) Zbl0184.08601MR0140732DOI10.1002/j.1538-7305.1961.tb03976.x
- Slepian, D., 10.1002/j.1538-7305.1964.tb01037.x, Bell. System Tech. J. 43 (1964), 3009-3057. (1964) Zbl0184.08604MR0181766DOI10.1002/j.1538-7305.1964.tb01037.x
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.