Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms.
Aline Bonami; Demange, Bruno, Jaming, Philippe
Revista Matemática Iberoamericana (2003)
- Volume: 19, Issue: 1, page 23-55
- ISSN: 0213-2230
Access Full Article
topAbstract
topHow to cite
topBonami, Aline, and Demange, Bruno, Jaming, Philippe. "Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms.." Revista Matemática Iberoamericana 19.1 (2003): 23-55. <http://eudml.org/doc/39685>.
@article{Bonami2003,
abstract = {We extend an uncertainty principle due to Beurling into a characterization of Hermite functions. More precisely, all functions f on Rd which may be written as P(x)exp(-(Ax,x)), with A a real symmetric definite positive matrix, are characterized by integrability conditions on the product f(x)f(y). We then obtain similar results for the windowed Fourier transform (also known, up to elementary changes of functions, as the radar ambiguity function or the Wigner transform). We complete the paper with a sharp version of Heisenberg's inequality for this transform.},
author = {Bonami, Aline, Demange, Bruno, Jaming, Philippe},
journal = {Revista Matemática Iberoamericana},
keywords = {Incertidumbre; Transformada de Fourier; Transformada de Wigner; Funciones de variable compleja; Funciones holomorfas de varias variables; Función entera; Polinomios de Hermite; uncertainty principle; short-time Fourier transform; windowed Fourier transform; Gabor transform; ambiguity function; Wigner transform; spectrogram},
language = {eng},
number = {1},
pages = {23-55},
title = {Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms.},
url = {http://eudml.org/doc/39685},
volume = {19},
year = {2003},
}
TY - JOUR
AU - Bonami, Aline
AU - Demange, Bruno, Jaming, Philippe
TI - Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms.
JO - Revista Matemática Iberoamericana
PY - 2003
VL - 19
IS - 1
SP - 23
EP - 55
AB - We extend an uncertainty principle due to Beurling into a characterization of Hermite functions. More precisely, all functions f on Rd which may be written as P(x)exp(-(Ax,x)), with A a real symmetric definite positive matrix, are characterized by integrability conditions on the product f(x)f(y). We then obtain similar results for the windowed Fourier transform (also known, up to elementary changes of functions, as the radar ambiguity function or the Wigner transform). We complete the paper with a sharp version of Heisenberg's inequality for this transform.
LA - eng
KW - Incertidumbre; Transformada de Fourier; Transformada de Wigner; Funciones de variable compleja; Funciones holomorfas de varias variables; Función entera; Polinomios de Hermite; uncertainty principle; short-time Fourier transform; windowed Fourier transform; Gabor transform; ambiguity function; Wigner transform; spectrogram
UR - http://eudml.org/doc/39685
ER -
Citations in EuDML Documents
top- Angela Pasquale, Maddala Sundari, Uncertainty principles for the Schrödinger equation on Riemannian symmetric spaces of the noncompact type
- Philippe Jaming, Uncertainty principles for orthonormal bases
- Hatem Mejjaoli, Makren Salhi, Uncertainty principles for the Weinstein transform
- Saifallah Ghobber, Dunkl-Gabor transform and time-frequency concentration
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.