Formula for unbiased bases

Maurice R. Kibler

Kybernetika (2010)

  • Volume: 46, Issue: 6, page 1122-1137
  • ISSN: 0023-5954

Abstract

top
The present paper deals with mutually unbiased bases for systems of qudits in d dimensions. Such bases are of considerable interest in quantum information. A formula for deriving a complete set of 1 + p mutually unbiased bases is given for d = p where p is a prime integer. The formula follows from a nonstandard approach to the representation theory of the group S U ( 2 ) . A particular case of the formula is derived from the introduction of a phase operator associated with a generalized oscillator algebra. The case when d = p e ( e 2 ), corresponding to the power of a prime integer, is briefly examined. Finally, complete sets of mutually unbiased bases are analysed through a Lie algebraic approach.

How to cite

top

Kibler, Maurice R.. "Formula for unbiased bases." Kybernetika 46.6 (2010): 1122-1137. <http://eudml.org/doc/197121>.

@article{Kibler2010,
abstract = {The present paper deals with mutually unbiased bases for systems of qudits in $d$ dimensions. Such bases are of considerable interest in quantum information. A formula for deriving a complete set of $1+p$ mutually unbiased bases is given for $d=p$ where $p$ is a prime integer. The formula follows from a nonstandard approach to the representation theory of the group $SU(2)$. A particular case of the formula is derived from the introduction of a phase operator associated with a generalized oscillator algebra. The case when $d = p^e$ ($e \ge 2$), corresponding to the power of a prime integer, is briefly examined. Finally, complete sets of mutually unbiased bases are analysed through a Lie algebraic approach.},
author = {Kibler, Maurice R.},
journal = {Kybernetika},
keywords = {mutually unbiased bases; Weyl pairs; phase states; Lie algebras; mutually unbiased bases; Weyl pairs; phase states; Lie algebras},
language = {eng},
number = {6},
pages = {1122-1137},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Formula for unbiased bases},
url = {http://eudml.org/doc/197121},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Kibler, Maurice R.
TI - Formula for unbiased bases
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 6
SP - 1122
EP - 1137
AB - The present paper deals with mutually unbiased bases for systems of qudits in $d$ dimensions. Such bases are of considerable interest in quantum information. A formula for deriving a complete set of $1+p$ mutually unbiased bases is given for $d=p$ where $p$ is a prime integer. The formula follows from a nonstandard approach to the representation theory of the group $SU(2)$. A particular case of the formula is derived from the introduction of a phase operator associated with a generalized oscillator algebra. The case when $d = p^e$ ($e \ge 2$), corresponding to the power of a prime integer, is briefly examined. Finally, complete sets of mutually unbiased bases are analysed through a Lie algebraic approach.
LA - eng
KW - mutually unbiased bases; Weyl pairs; phase states; Lie algebras; mutually unbiased bases; Weyl pairs; phase states; Lie algebras
UR - http://eudml.org/doc/197121
ER -

References

top
  1. Albouy, O., Kibler, M. R., SU(2) nonstandard bases: Case of mutually unbiased bases, SIGMA 3 (2007), 076 (22 pages). (2007) Zbl1139.81357MR2322803
  2. Aschbacher, M., Childs, A. M., Wocjan, P., 10.1007/s10801-006-0002-y, J. Algebr. Comb. 25 (2007), 111–123. (2007) Zbl1109.81016MR2310416DOI10.1007/s10801-006-0002-y
  3. Atakishiyev, N. M., Kibler, M. R., Wolf, K. B., SU(2) and SU(1,1) approaches to phase operators and temporally stable phase states: applications to mutually unbiased bases and discrete Fourier transforms, (in preparation) 
  4. Balian, R., Itzykson, C., Observations sur la mécanique quantique finie, C. R. Acad. Sci. (Paris) 303 (1986), 773–778. (1986) Zbl0606.22017MR0872556
  5. Bandyopadhyay, S., Boykin, P. O., Roychowdhury, V., Vatan, F., 10.1007/s00453-002-0980-7, Algorithmica 34 (2002), 512–528. (2002) Zbl1012.68069MR1943521DOI10.1007/s00453-002-0980-7
  6. Bengtsson, I., Bruzda, W., Ericsson, Å., Larsson, J. Å., Tadej, W., Życkowski, K., 10.1063/1.2716990, J. Math. Phys. 48 (2007), 052106 (21 pages). (2007) MR2326331DOI10.1063/1.2716990
  7. Berndt, B. C., Evans, R. J., 10.1090/S0273-0979-1981-14930-2, Bull. Am. Math. Soc. 5 (1981), 107–130. (1981) Zbl0471.10028MR0621882DOI10.1090/S0273-0979-1981-14930-2
  8. Boykin, P. O., Sitharam, M., Tiep, P. H., Wocjan, P., Mutually unbiased bases and orthogonal decompositions of Lie algebras, Quantum Inf. Comput. 7 (2007), 371–382. (2007) Zbl1152.81680MR2363400
  9. Brierley, S., Weigert, S., 10.1103/PhysRevA.79.052316, Phys. Rev. A 79 (2009), 052316 (13 pages). (2009) MR2550430DOI10.1103/PhysRevA.79.052316
  10. Calderbank, A. R., Cameron, P. J., Kantor, W. M., Seidel, J. J., Z4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets, Proc. London Math. Soc. 75 (1997), 436–480. (1997) MR1455862
  11. Daoud, M., Kibler, M. R., 10.1088/1751-8113/43/11/115303, J. Phys. A: Math. Theor. 43 (2010), 115303 (18 pages). (2010) Zbl1186.81052MR2595275DOI10.1088/1751-8113/43/11/115303
  12. Delsarte, P., Goethals, J. M., Seidel, J. J., Bounds for systems of lines and Jacobi polynomials, Philips Res. Repts. 30 (1975), 91–105. (1975) Zbl0322.05023
  13. Diţă, P., 10.1088/0305-4470/37/20/008, J. Phys. A: Math. Gen. 37 (2004), 5355–5374. (2004) Zbl1062.81018MR2065675DOI10.1088/0305-4470/37/20/008
  14. Gottesman, D., Kitaev, A., Preskill, J., 10.1103/PhysRevA.64.012310, Phys. Rev. A 64 (2001), 012310 (21 pages). (2001) DOI10.1103/PhysRevA.64.012310
  15. Grassl, M., 10.1016/j.endm.2005.05.060, Elec. Notes Discrete Math. 20 (2005), 151–164. (2005) Zbl1179.81042MR2301093DOI10.1016/j.endm.2005.05.060
  16. Ivanović, I. D., 10.1088/0305-4470/14/12/019, J. Phys. A: Math. Gen. 14 (1981), 3241–3245. (1981) MR0639558DOI10.1088/0305-4470/14/12/019
  17. Kibler, M. R., 10.1142/S0217979206034297, Int. J. Mod. Phys. B 20 (2006), 1792–1801. (2006) Zbl1093.81034MR2234957DOI10.1142/S0217979206034297
  18. Kibler, M. R., 10.1088/1751-8113/41/37/375302, J. Phys. A: Math. Theor. 41 (2008), 375302 (19 pages). (2008) Zbl1147.81014MR2430579DOI10.1088/1751-8113/41/37/375302
  19. Kibler, M. R., 10.1088/1751-8113/42/35/353001, J. Phys. A: Math. Theor. 42 (2009), 353001 (28 pages). (2009) MR2533879DOI10.1088/1751-8113/42/35/353001
  20. Kibler, M. R., Planat, M., 10.1142/S0217979206034303, Int. J. Mod. Phys. B 20 (2006), 1802–1807. (2006) Zbl1093.81035MR2234958DOI10.1142/S0217979206034303
  21. Lawrence, J., Brukner, Č., Zeilinger, A., 10.1103/PhysRevA.65.032320, Phys. Rev. A 65 (2002), 032320 (5 pages). (2002) DOI10.1103/PhysRevA.65.032320
  22. Patera, J., Zassenhaus, H., 10.1063/1.528006, J. Math. Phys. 29 (1988), 665–673. (1988) MR0931470DOI10.1063/1.528006
  23. Pittenger, A. O., Rubin, M. H., 10.1088/0305-4470/38/26/012, J. Phys. A: Math. Gen. 38 (2005), 6005–6036. (2005) Zbl1073.81058MR2167959DOI10.1088/0305-4470/38/26/012
  24. Šťovíček, P., Tolar, J., 10.1016/0034-4877(84)90030-2, Rep. Math. Phys. 20 (1984), 157–170. (1984) MR0776027DOI10.1016/0034-4877(84)90030-2
  25. Šulc, P., Tolar, J., 10.1088/1751-8113/40/50/013, J. Phys. A: Math. Gen. 40 (2007), 15099 (13 pages). (2007) Zbl1134.81323MR2442616DOI10.1088/1751-8113/40/50/013
  26. Tadej, W., Życzkowski, K., 10.1007/s11080-006-8220-2, Open Sys. Info. Dynamics 13 (2006), 133–177. (2006) Zbl1105.15020MR2244963DOI10.1007/s11080-006-8220-2
  27. Wocjan, P., Beth, T., New construction of mutually unbiased bases in square dimensions, Quantum Inf. Comput. 5 (2005), 93–101. (2005) Zbl1213.81108MR2132048
  28. Wootters, W. K., Fields, B. D., 10.1016/0003-4916(89)90322-9, Ann. Phys. (N.Y.) 191 (1989), 363–381. (1989) MR1003014DOI10.1016/0003-4916(89)90322-9

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.