Formula for unbiased bases
Kybernetika (2010)
- Volume: 46, Issue: 6, page 1122-1137
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topKibler, Maurice R.. "Formula for unbiased bases." Kybernetika 46.6 (2010): 1122-1137. <http://eudml.org/doc/197121>.
@article{Kibler2010,
abstract = {The present paper deals with mutually unbiased bases for systems of qudits in $d$ dimensions. Such bases are of considerable interest in quantum information. A formula for deriving a complete set of $1+p$ mutually unbiased bases is given for $d=p$ where $p$ is a prime integer. The formula follows from a nonstandard approach to the representation theory of the group $SU(2)$. A particular case of the formula is derived from the introduction of a phase operator associated with a generalized oscillator algebra. The case when $d = p^e$ ($e \ge 2$), corresponding to the power of a prime integer, is briefly examined. Finally, complete sets of mutually unbiased bases are analysed through a Lie algebraic approach.},
author = {Kibler, Maurice R.},
journal = {Kybernetika},
keywords = {mutually unbiased bases; Weyl pairs; phase states; Lie algebras; mutually unbiased bases; Weyl pairs; phase states; Lie algebras},
language = {eng},
number = {6},
pages = {1122-1137},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Formula for unbiased bases},
url = {http://eudml.org/doc/197121},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Kibler, Maurice R.
TI - Formula for unbiased bases
JO - Kybernetika
PY - 2010
PB - Institute of Information Theory and Automation AS CR
VL - 46
IS - 6
SP - 1122
EP - 1137
AB - The present paper deals with mutually unbiased bases for systems of qudits in $d$ dimensions. Such bases are of considerable interest in quantum information. A formula for deriving a complete set of $1+p$ mutually unbiased bases is given for $d=p$ where $p$ is a prime integer. The formula follows from a nonstandard approach to the representation theory of the group $SU(2)$. A particular case of the formula is derived from the introduction of a phase operator associated with a generalized oscillator algebra. The case when $d = p^e$ ($e \ge 2$), corresponding to the power of a prime integer, is briefly examined. Finally, complete sets of mutually unbiased bases are analysed through a Lie algebraic approach.
LA - eng
KW - mutually unbiased bases; Weyl pairs; phase states; Lie algebras; mutually unbiased bases; Weyl pairs; phase states; Lie algebras
UR - http://eudml.org/doc/197121
ER -
References
top- Albouy, O., Kibler, M. R., SU(2) nonstandard bases: Case of mutually unbiased bases, SIGMA 3 (2007), 076 (22 pages). (2007) Zbl1139.81357MR2322803
- Aschbacher, M., Childs, A. M., Wocjan, P., 10.1007/s10801-006-0002-y, J. Algebr. Comb. 25 (2007), 111–123. (2007) Zbl1109.81016MR2310416DOI10.1007/s10801-006-0002-y
- Atakishiyev, N. M., Kibler, M. R., Wolf, K. B., SU(2) and SU(1,1) approaches to phase operators and temporally stable phase states: applications to mutually unbiased bases and discrete Fourier transforms, (in preparation)
- Balian, R., Itzykson, C., Observations sur la mécanique quantique finie, C. R. Acad. Sci. (Paris) 303 (1986), 773–778. (1986) Zbl0606.22017MR0872556
- Bandyopadhyay, S., Boykin, P. O., Roychowdhury, V., Vatan, F., 10.1007/s00453-002-0980-7, Algorithmica 34 (2002), 512–528. (2002) Zbl1012.68069MR1943521DOI10.1007/s00453-002-0980-7
- Bengtsson, I., Bruzda, W., Ericsson, Å., Larsson, J. Å., Tadej, W., Życkowski, K., 10.1063/1.2716990, J. Math. Phys. 48 (2007), 052106 (21 pages). (2007) MR2326331DOI10.1063/1.2716990
- Berndt, B. C., Evans, R. J., 10.1090/S0273-0979-1981-14930-2, Bull. Am. Math. Soc. 5 (1981), 107–130. (1981) Zbl0471.10028MR0621882DOI10.1090/S0273-0979-1981-14930-2
- Boykin, P. O., Sitharam, M., Tiep, P. H., Wocjan, P., Mutually unbiased bases and orthogonal decompositions of Lie algebras, Quantum Inf. Comput. 7 (2007), 371–382. (2007) Zbl1152.81680MR2363400
- Brierley, S., Weigert, S., 10.1103/PhysRevA.79.052316, Phys. Rev. A 79 (2009), 052316 (13 pages). (2009) MR2550430DOI10.1103/PhysRevA.79.052316
- Calderbank, A. R., Cameron, P. J., Kantor, W. M., Seidel, J. J., Z4-Kerdock codes, orthogonal spreads, and extremal Euclidean line-sets, Proc. London Math. Soc. 75 (1997), 436–480. (1997) MR1455862
- Daoud, M., Kibler, M. R., 10.1088/1751-8113/43/11/115303, J. Phys. A: Math. Theor. 43 (2010), 115303 (18 pages). (2010) Zbl1186.81052MR2595275DOI10.1088/1751-8113/43/11/115303
- Delsarte, P., Goethals, J. M., Seidel, J. J., Bounds for systems of lines and Jacobi polynomials, Philips Res. Repts. 30 (1975), 91–105. (1975) Zbl0322.05023
- Diţă, P., 10.1088/0305-4470/37/20/008, J. Phys. A: Math. Gen. 37 (2004), 5355–5374. (2004) Zbl1062.81018MR2065675DOI10.1088/0305-4470/37/20/008
- Gottesman, D., Kitaev, A., Preskill, J., 10.1103/PhysRevA.64.012310, Phys. Rev. A 64 (2001), 012310 (21 pages). (2001) DOI10.1103/PhysRevA.64.012310
- Grassl, M., 10.1016/j.endm.2005.05.060, Elec. Notes Discrete Math. 20 (2005), 151–164. (2005) Zbl1179.81042MR2301093DOI10.1016/j.endm.2005.05.060
- Ivanović, I. D., 10.1088/0305-4470/14/12/019, J. Phys. A: Math. Gen. 14 (1981), 3241–3245. (1981) MR0639558DOI10.1088/0305-4470/14/12/019
- Kibler, M. R., 10.1142/S0217979206034297, Int. J. Mod. Phys. B 20 (2006), 1792–1801. (2006) Zbl1093.81034MR2234957DOI10.1142/S0217979206034297
- Kibler, M. R., 10.1088/1751-8113/41/37/375302, J. Phys. A: Math. Theor. 41 (2008), 375302 (19 pages). (2008) Zbl1147.81014MR2430579DOI10.1088/1751-8113/41/37/375302
- Kibler, M. R., 10.1088/1751-8113/42/35/353001, J. Phys. A: Math. Theor. 42 (2009), 353001 (28 pages). (2009) MR2533879DOI10.1088/1751-8113/42/35/353001
- Kibler, M. R., Planat, M., 10.1142/S0217979206034303, Int. J. Mod. Phys. B 20 (2006), 1802–1807. (2006) Zbl1093.81035MR2234958DOI10.1142/S0217979206034303
- Lawrence, J., Brukner, Č., Zeilinger, A., 10.1103/PhysRevA.65.032320, Phys. Rev. A 65 (2002), 032320 (5 pages). (2002) DOI10.1103/PhysRevA.65.032320
- Patera, J., Zassenhaus, H., 10.1063/1.528006, J. Math. Phys. 29 (1988), 665–673. (1988) MR0931470DOI10.1063/1.528006
- Pittenger, A. O., Rubin, M. H., 10.1088/0305-4470/38/26/012, J. Phys. A: Math. Gen. 38 (2005), 6005–6036. (2005) Zbl1073.81058MR2167959DOI10.1088/0305-4470/38/26/012
- Šťovíček, P., Tolar, J., 10.1016/0034-4877(84)90030-2, Rep. Math. Phys. 20 (1984), 157–170. (1984) MR0776027DOI10.1016/0034-4877(84)90030-2
- Šulc, P., Tolar, J., 10.1088/1751-8113/40/50/013, J. Phys. A: Math. Gen. 40 (2007), 15099 (13 pages). (2007) Zbl1134.81323MR2442616DOI10.1088/1751-8113/40/50/013
- Tadej, W., Życzkowski, K., 10.1007/s11080-006-8220-2, Open Sys. Info. Dynamics 13 (2006), 133–177. (2006) Zbl1105.15020MR2244963DOI10.1007/s11080-006-8220-2
- Wocjan, P., Beth, T., New construction of mutually unbiased bases in square dimensions, Quantum Inf. Comput. 5 (2005), 93–101. (2005) Zbl1213.81108MR2132048
- Wootters, W. K., Fields, B. D., 10.1016/0003-4916(89)90322-9, Ann. Phys. (N.Y.) 191 (1989), 363–381. (1989) MR1003014DOI10.1016/0003-4916(89)90322-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.