Resolvents, integral equations, limit sets

Theodore Allen Burton; D. P. Dwiggins

Mathematica Bohemica (2010)

  • Volume: 135, Issue: 4, page 337-354
  • ISSN: 0862-7959

Abstract

top
In this paper we study a linear integral equation x ( t ) = a ( t ) - 0 t C ( t , s ) x ( s ) d s , its resolvent equation R ( t , s ) = C ( t , s ) - s t C ( t , u ) R ( u , s ) d u , the variation of parameters formula x ( t ) = a ( t ) - 0 t R ( t , s ) a ( s ) d s , and a perturbed equation. The kernel, C ( t , s ) , satisfies classical smoothness and sign conditions assumed in many real-world problems. We study the effects of perturbations of C and also the limit sets of the resolvent. These results lead us to the study of nonlinear perturbations.

How to cite

top

Burton, Theodore Allen, and Dwiggins, D. P.. "Resolvents, integral equations, limit sets." Mathematica Bohemica 135.4 (2010): 337-354. <http://eudml.org/doc/197147>.

@article{Burton2010,
abstract = {In this paper we study a linear integral equation $x(t)=a(t)-\int ^t_0 C(t,s) x(s) \{\rm d\} s$, its resolvent equation $R(t,s)=C(t,s)-\int ^t_s C(t,u)R(u,s) \{\rm d\} u$, the variation of parameters formula $x(t)=a(t)-\int ^t_0 R(t,s)a(s) \{\rm d\} s$, and a perturbed equation. The kernel, $C(t,s)$, satisfies classical smoothness and sign conditions assumed in many real-world problems. We study the effects of perturbations of $C$ and also the limit sets of the resolvent. These results lead us to the study of nonlinear perturbations.},
author = {Burton, Theodore Allen, Dwiggins, D. P.},
journal = {Mathematica Bohemica},
keywords = {integral equation; resolvent; linear integral equation; resolvent equation; nonlinear perturbations},
language = {eng},
number = {4},
pages = {337-354},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Resolvents, integral equations, limit sets},
url = {http://eudml.org/doc/197147},
volume = {135},
year = {2010},
}

TY - JOUR
AU - Burton, Theodore Allen
AU - Dwiggins, D. P.
TI - Resolvents, integral equations, limit sets
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 4
SP - 337
EP - 354
AB - In this paper we study a linear integral equation $x(t)=a(t)-\int ^t_0 C(t,s) x(s) {\rm d} s$, its resolvent equation $R(t,s)=C(t,s)-\int ^t_s C(t,u)R(u,s) {\rm d} u$, the variation of parameters formula $x(t)=a(t)-\int ^t_0 R(t,s)a(s) {\rm d} s$, and a perturbed equation. The kernel, $C(t,s)$, satisfies classical smoothness and sign conditions assumed in many real-world problems. We study the effects of perturbations of $C$ and also the limit sets of the resolvent. These results lead us to the study of nonlinear perturbations.
LA - eng
KW - integral equation; resolvent; linear integral equation; resolvent equation; nonlinear perturbations
UR - http://eudml.org/doc/197147
ER -

References

top
  1. Burton, T. A., Liapunov Functionals for Integral Equations, Trafford, Victoria, B. C., Canada (2008) (www.trafford.com/08-1365). 
  2. Burton, T. A., 10.1016/S0893-6080(05)80111-X, Neural Networks 6 (1993), 667-680. (1993) DOI10.1016/S0893-6080(05)80111-X
  3. Ergen, W. K., 10.1063/1.1721720, J. Appl. Phys. 25 (1954), 702-711. (1954) Zbl0055.23003DOI10.1063/1.1721720
  4. Islam, M. N., Neugebauer, J. T., 10.14232/ejqtde.2008.1.12, Electron. J. Qual. Theory Differ. Equ. 12 (2008), 1-16. (2008) Zbl1178.45009MR2385416DOI10.14232/ejqtde.2008.1.12
  5. Levin, J. J., 10.1090/S0002-9939-1963-0152852-8, Proc. Amer. Math. Soc. 14 (1963), 534-541. (1963) Zbl0115.32403MR0152852DOI10.1090/S0002-9939-1963-0152852-8
  6. Miller, Richard K., Nonlinear Volterra Integral Equations, Benjamin, New York (1971). (1971) Zbl0448.45004MR0511193
  7. Reynolds, David W., 10.1016/0022-247X(84)90171-9, J. Math. Anal. Appl. 103 (1984), 230-262. (1984) Zbl0557.45003MR0757637DOI10.1016/0022-247X(84)90171-9
  8. Strauss, A., 10.1016/0022-247X(70)90141-1, J. Math. Anal. Appl. 30 (1970), 564-575. (1970) MR0261291DOI10.1016/0022-247X(70)90141-1
  9. Volterra, V., Sur la théorie mathématique des phénomès héréditaires, J. Math. Pur. Appl. 7 (1928), 249-298. (1928) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.