Resolvents, integral equations, limit sets
Theodore Allen Burton; D. P. Dwiggins
Mathematica Bohemica (2010)
- Volume: 135, Issue: 4, page 337-354
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBurton, Theodore Allen, and Dwiggins, D. P.. "Resolvents, integral equations, limit sets." Mathematica Bohemica 135.4 (2010): 337-354. <http://eudml.org/doc/197147>.
@article{Burton2010,
abstract = {In this paper we study a linear integral equation $x(t)=a(t)-\int ^t_0 C(t,s) x(s) \{\rm d\} s$, its resolvent equation $R(t,s)=C(t,s)-\int ^t_s C(t,u)R(u,s) \{\rm d\} u$, the variation of parameters formula $x(t)=a(t)-\int ^t_0 R(t,s)a(s) \{\rm d\} s$, and a perturbed equation. The kernel, $C(t,s)$, satisfies classical smoothness and sign conditions assumed in many real-world problems. We study the effects of perturbations of $C$ and also the limit sets of the resolvent. These results lead us to the study of nonlinear perturbations.},
author = {Burton, Theodore Allen, Dwiggins, D. P.},
journal = {Mathematica Bohemica},
keywords = {integral equation; resolvent; linear integral equation; resolvent equation; nonlinear perturbations},
language = {eng},
number = {4},
pages = {337-354},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Resolvents, integral equations, limit sets},
url = {http://eudml.org/doc/197147},
volume = {135},
year = {2010},
}
TY - JOUR
AU - Burton, Theodore Allen
AU - Dwiggins, D. P.
TI - Resolvents, integral equations, limit sets
JO - Mathematica Bohemica
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 135
IS - 4
SP - 337
EP - 354
AB - In this paper we study a linear integral equation $x(t)=a(t)-\int ^t_0 C(t,s) x(s) {\rm d} s$, its resolvent equation $R(t,s)=C(t,s)-\int ^t_s C(t,u)R(u,s) {\rm d} u$, the variation of parameters formula $x(t)=a(t)-\int ^t_0 R(t,s)a(s) {\rm d} s$, and a perturbed equation. The kernel, $C(t,s)$, satisfies classical smoothness and sign conditions assumed in many real-world problems. We study the effects of perturbations of $C$ and also the limit sets of the resolvent. These results lead us to the study of nonlinear perturbations.
LA - eng
KW - integral equation; resolvent; linear integral equation; resolvent equation; nonlinear perturbations
UR - http://eudml.org/doc/197147
ER -
References
top- Burton, T. A., Liapunov Functionals for Integral Equations, Trafford, Victoria, B. C., Canada (2008) (www.trafford.com/08-1365).
- Burton, T. A., 10.1016/S0893-6080(05)80111-X, Neural Networks 6 (1993), 667-680. (1993) DOI10.1016/S0893-6080(05)80111-X
- Ergen, W. K., 10.1063/1.1721720, J. Appl. Phys. 25 (1954), 702-711. (1954) Zbl0055.23003DOI10.1063/1.1721720
- Islam, M. N., Neugebauer, J. T., 10.14232/ejqtde.2008.1.12, Electron. J. Qual. Theory Differ. Equ. 12 (2008), 1-16. (2008) Zbl1178.45009MR2385416DOI10.14232/ejqtde.2008.1.12
- Levin, J. J., 10.1090/S0002-9939-1963-0152852-8, Proc. Amer. Math. Soc. 14 (1963), 534-541. (1963) Zbl0115.32403MR0152852DOI10.1090/S0002-9939-1963-0152852-8
- Miller, Richard K., Nonlinear Volterra Integral Equations, Benjamin, New York (1971). (1971) Zbl0448.45004MR0511193
- Reynolds, David W., 10.1016/0022-247X(84)90171-9, J. Math. Anal. Appl. 103 (1984), 230-262. (1984) Zbl0557.45003MR0757637DOI10.1016/0022-247X(84)90171-9
- Strauss, A., 10.1016/0022-247X(70)90141-1, J. Math. Anal. Appl. 30 (1970), 564-575. (1970) MR0261291DOI10.1016/0022-247X(70)90141-1
- Volterra, V., Sur la théorie mathématique des phénomès héréditaires, J. Math. Pur. Appl. 7 (1928), 249-298. (1928)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.