A generalization of Constantin's integral inequality and its discrete analogue.
Page 1 Next
Yang, En-Hao, Tan, Man-Chun (2007)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Burton, T.A. (2010)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
R. Smarzewski (1976)
Applicationes Mathematicae
T. Radzik, K. Orłowski (1982)
Applicationes Mathematicae
Krishnan Balachandran, P. Balasubramaniam (1992)
Kybernetika
Afaf Abou El-Fotouh Saleh Zaghrout, Z. M. M. Aly (1988)
Archivum Mathematicum
Zdzisław Jackiewicz, Marian Kwapisz (1984)
Czechoslovak Mathematical Journal
Jiří Cerha (1972)
Commentationes Mathematicae Universitatis Carolinae
Angelo Morro (1983)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Utilizzando una generalizzazione della disuguaglianza di Gronwall si fornisce una stima puntuale per la soluzione dell’equazione lineare integrale di Volterra di seconda specie. Tale stima può essere applicata utilmente anche nello studio della stabilità di equazioni di evoluzione per mezzi continui.
A. Styszyński (1980)
Applicationes Mathematicae
Wojciech Mydlarczyk (1998)
Annales Polonici Mathematici
We consider the problem of the existence of positive solutions u to the problem , (g ≥ 0,x > 0, n ≥ 2). It is known that if g is nondecreasing then the Osgood condition is necessary and sufficient for the existence of nontrivial solutions to the above problem. We give a similar condition for other classes of functions g.
Ľubor Malina (1975)
Aplikace matematiky
Method for numerical solution of Volterra integral equations, based on the O.I.M. methods, is suggested. It is known that the class of O.I.M. methods includes -stable methods of arbitrary high order of asymptotic accuracy. In part 5, it is proved that these methods generate methods for numerical solution of Volterra equations which are also -stable and of an arbitrarily high order. There is one advantage of the methods. Namely, they need no matrix inversion in the course of their numerical realization....
Shidfar, A., Zakeri, A., Neisi, A. (2005)
International Journal of Mathematics and Mathematical Sciences
Mydlarczyk, W. (2001)
Journal of Inequalities and Applications [electronic only]
El-Sayed, A.M.A., Hashem, H.H.G. (2009)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
J. Faraut (1982)
Publications du Département de mathématiques (Lyon)
Choi, Sung Kyu, Koo, Namjip (2008)
Advances in Difference Equations [electronic only]
Appleby, John A.D. (2002)
Electronic Communications in Probability [electronic only]
Avramescu, Cezar, Vladimirescu, Cristian (2005)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
Balachandran, K., Ilamaran, S. (1990)
Journal of Applied Mathematics and Stochastic Analysis
Page 1 Next