Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet

Bernard Bonnard; Monique Chyba

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 4, page 245-334
  • ISSN: 1292-8119

Abstract

top
Consider a sub-riemannian geometry(U,D,g) where U is a neighborhood of 0 in R3, D is a Martinet type distribution identified to ker ω, ω being the 1-form: ω = d z - y 2 2 d x , q=(x,y,z) and g is a metric on D which can be taken in the normal form: g = a ( q ) d x 2 + c ( q ) d y 2 , a=1+yF(q), c=1+G(q), G | x = y = 0 = 0 . In a previous article we analyze the flat case: a=c=1; we describe the conjugate and cut loci, the sphere and the wave front. The objectif of this article is to provide a geometric and computational framework to analyze the general case. This frame is obtained by analysing three one parameter deformations of the flat case which clarify the role of the three parameters α , β , γ in the gradated normal form of order 0 where: a = ( 1 + α y ) 2 , c = ( 1 + β x + γ y ) 2 . More generally this analysis provides an explanation of the role of abnormal minimizers in SR-geometry.

How to cite

top

Bonnard, Bernard, and Chyba, Monique. "Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet." ESAIM: Control, Optimisation and Calculus of Variations 4 (2010): 245-334. <http://eudml.org/doc/197273>.

@article{Bonnard2010,
abstract = { Consider a sub-riemannian geometry(U,D,g) where U is a neighborhood of 0 in R3, D is a Martinet type distribution identified to ker ω, ω being the 1-form: $\omega=dz-\frac\{y^2\}\{2\}dx$, q=(x,y,z) and g is a metric on D which can be taken in the normal form: $g=a(q)dx^2+c(q)dy^2$, a=1+yF(q), c=1+G(q), $G_\{|_\{x=y=0\}\}=0$. In a previous article we analyze the flat case: a=c=1; we describe the conjugate and cut loci, the sphere and the wave front. The objectif of this article is to provide a geometric and computational framework to analyze the general case. This frame is obtained by analysing three one parameter deformations of the flat case which clarify the role of the three parameters $\alpha,\beta,\gamma$ in the gradated normal form of order 0 where: $a=(1+\alpha y)^2$, $c=(1+\beta x+\gamma y)^2$. More generally this analysis provides an explanation of the role of abnormal minimizers in SR-geometry. },
author = {Bonnard, Bernard, Chyba, Monique},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Sub-riemannian geometry; Martinet case; abnormal geodesics; sphere and wave front of small radius. Mots clés : Géométrie sous-riemannienne; le cas Martinet; géodésiques anormales; sphère et front d'onde de petit rayon.; sub-Riemannian geometry; abnormal geodesics; sphere and wavefront of small radius; one parameter deformations},
language = {fre},
month = {3},
pages = {245-334},
publisher = {EDP Sciences},
title = {Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet},
url = {http://eudml.org/doc/197273},
volume = {4},
year = {2010},
}

TY - JOUR
AU - Bonnard, Bernard
AU - Chyba, Monique
TI - Méthodes géométriques et analytiques pour étudier l'application exponentielle, la sphère et le front d'onde en géométrie sous-riemannienne dans le cas Martinet
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 4
SP - 245
EP - 334
AB - Consider a sub-riemannian geometry(U,D,g) where U is a neighborhood of 0 in R3, D is a Martinet type distribution identified to ker ω, ω being the 1-form: $\omega=dz-\frac{y^2}{2}dx$, q=(x,y,z) and g is a metric on D which can be taken in the normal form: $g=a(q)dx^2+c(q)dy^2$, a=1+yF(q), c=1+G(q), $G_{|_{x=y=0}}=0$. In a previous article we analyze the flat case: a=c=1; we describe the conjugate and cut loci, the sphere and the wave front. The objectif of this article is to provide a geometric and computational framework to analyze the general case. This frame is obtained by analysing three one parameter deformations of the flat case which clarify the role of the three parameters $\alpha,\beta,\gamma$ in the gradated normal form of order 0 where: $a=(1+\alpha y)^2$, $c=(1+\beta x+\gamma y)^2$. More generally this analysis provides an explanation of the role of abnormal minimizers in SR-geometry.
LA - fre
KW - Sub-riemannian geometry; Martinet case; abnormal geodesics; sphere and wave front of small radius. Mots clés : Géométrie sous-riemannienne; le cas Martinet; géodésiques anormales; sphère et front d'onde de petit rayon.; sub-Riemannian geometry; abnormal geodesics; sphere and wavefront of small radius; one parameter deformations
UR - http://eudml.org/doc/197273
ER -

References

top
  1. A. Agrachev, B. Bonnard, M. Chyba and I. Kupka Sub-Riemannian sphere in Martinet flat case. ESAIM:COCV2 (1997) 377-448.  
  2. A. Agrachev, C. El Alaoui and J.P. Gauthier, Sub-Riemannian metrics on R3. Geometric Control and Non-holonomic Problems in Mechanics, Conference Proceedings Series, Canad. Math. Soc. (to appear).  
  3. A.A. Agrachev and R.V. Gamkrelidze, Exponentional representations of flows and chronological calculus. Math. USSR Sb.35 (1979) 727-785.  
  4. A.A. Agrachev and A.V. Sarychev, Strong minimality of abnormal geodesics for 2- distributions. J. Dynamical and Control Systems1 (1995) 139-176.  
  5. A.A. Agrachev and A.V. Sarychev, Abnormal geodesics in SR-geometry subanalycity. Preprint (1997).  
  6. A.A. Andronov, A.A. de Vitt and S.E. Khaikin, Theory of oscillations, Dover , New-York (1966).  
  7. B. Bonnard, M. Chyba and I. Kupka, Non-integrable geodesics in SR-Martinet geometry, Proceedings AMS conference, Boulder (1997).  
  8. B. Bonnard, M. Chyba and E. Trélat, Sub-Riemannian geometry: one parameter deformation of the Martinet flat case. J. Dynamical and Control Systems4 (1998) 59-76.  
  9. B. Bonnard, G. Launey and E. Trélat, The transcendence we need to compute the Sphere and the Wave Front in Martinet SR-Geometry. to appear in Proc. of Steklov Institute.  
  10. B. Bonnard and E. Trélat, The role of abnormal minimizers in SR-geometry. Preprint (1999).  
  11. M. Chyba, Le cas Martinet en géométrie sous-Riemannienne, Thèse de l'Université de Bourgogne (1997).  
  12. H. Davis, Introduction to non linear differential and integral equations, Dover, New-York, (1962).  
  13. J. Dieudonné, Calcul infinitésimal, Hermann, Paris (1980).  
  14. L.V.D. Dries, A. Macintyre and D. Marker, The elementary theory of restricted analytic fields with exponentiation, Annals of Mathematics140 (1994) 183-205.  
  15. J. Ecalle, Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Hermann, Paris (1992).  
  16. G.H. Halphen, Traité des fonctions elliptiques, Gauthier-Villars, Tomes I à IV, Paris (1886).  
  17. S. Jacquet, Distance sous-riemannienne et sous analycité. Preprint (1997).  
  18. A.G. Khovanskii, Fewnomials, Trans. Math. Monographs88, (1991) AMS.  
  19. I. Kupka, Abnormal extremals. Preprint (1992).  
  20. I. Kupka, Géométrie sous-Riemannienne, Séminaire Bourbaki (1996).  
  21. D.F. Lawden, Elliptic functions and applications, Springer-Verlag, New-York (1989).  
  22. E.B. Lee and L. Markus, Foundations of optimal control theory, John Wiley and Sons, New-York (1967).  
  23. S. Lefschetz, Differential equations: geometry theory, Dover, New-York (1977).  
  24. M.A. Liapounoff, Problème général de la stabilité du mouvement. Annals of Maths. Studies, Princeton University Press (1947).  
  25. J.M. Lion and J.P. Rolin, Théorèmes de préparation pour les fonctions logarithmo-exponentielles. Annales de l'Institut Fourier47 (1997) 859- 884.  
  26. W.S. Liu and H.J. Sussmann, Shortest paths for sub-Riemannian metrics of rank-2 distributions. Memoirs of the Americain Math. Society118, (1995).  
  27. S. Lojasiewicz and H.J. Sussmann, Some examples of reachable sets and optimal cost functions that fail to be subanalytic. SIAM J. Control Optim.23 (1985) 584-598.  
  28. A.E.H. Love, A treatise of the mathematical theory of elasticity, Dover (1944).  
  29. R. Montgomery, Abnormal minimizers, SIAM J. Control Optim.32 (1994) 1605-1620.  
  30. A. Mourtada and R. Moussu, Applications de Dulac et applications pfaffiennes. Bulletin SMF125 (1997) 1-13.  
  31. R. Moussu and A. Roche, Théorie de Khovanski et problème de Dulac. Inv. Math.105 (1991) 431-441.  
  32. R. Roussarie, Bifurcations of planar vector fields and Hilbert's 16th problem, Birkhauser, Berlin (1998).  
  33. J.J Stoker, Nonlinear elasticity, Gordon and Breach, London (1968).  
  34. R.A. Struble, Nonlinear differential equations, Mac Graw Hill (1962).  
  35. J. Tannery and J. Molk, Éléments de la théorie des fonctions elliptiques, Gauthier-Villars, Tomes I à IV, Paris (1896).  
  36. E.T. Whittaker and G.N. Watson, A course of modern analysis, Cambridge U. Press, New York (1927).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.