On Some Nonlinear Partial Differential Equations Involving the “1”-Laplacian and Critical Sobolev Exponent
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 4, page 667-686
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topDemengel, Françoise. "On Some Nonlinear Partial Differential Equations Involving the “1”-Laplacian and Critical Sobolev Exponent." ESAIM: Control, Optimisation and Calculus of Variations 4 (2010): 667-686. <http://eudml.org/doc/197312>.
@article{Demengel2010,
abstract = {
Let Ω be a smooth bounded domain in $\{\bf R\}^n$,
n > 1, let a and f be continuous functions on $\bar\Omega$, $1^\star =
\{n\over n-1\}$. We are concerned here with the existence of solution in
$BV(\Omega)$, positive or not, to the problem:
$$
\left\\{
\begin\{array\}\{rl\}
-\{\rm div\}\ \sigma+a(x) sign\ u &= f|u|^\{1^\star-2\} u\cr
\sigma.\nabla u &= |\nabla u|\ \{\rm in\}\ \Omega\cr
u\ \{\rm is\ not \ identically\ zero\}, &-\sigma.n (u) = |u|\ \{\rm on \}\ \partial
\Omega.\end\{array\}\right.$$
This problem is closely related to the extremal functions for the problem of
the best constant of $W^\{1,1\}(\Omega)$ into $L^\{N\over N-1\}(\Omega)$.
},
author = {Demengel, Françoise},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {BV functions; best constant for Sobolev embeddings.; 1-Laplacian; critical Sobolev exponent; existence},
language = {eng},
month = {3},
pages = {667-686},
publisher = {EDP Sciences},
title = {On Some Nonlinear Partial Differential Equations Involving the “1”-Laplacian and Critical Sobolev Exponent},
url = {http://eudml.org/doc/197312},
volume = {4},
year = {2010},
}
TY - JOUR
AU - Demengel, Françoise
TI - On Some Nonlinear Partial Differential Equations Involving the “1”-Laplacian and Critical Sobolev Exponent
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 4
SP - 667
EP - 686
AB -
Let Ω be a smooth bounded domain in ${\bf R}^n$,
n > 1, let a and f be continuous functions on $\bar\Omega$, $1^\star =
{n\over n-1}$. We are concerned here with the existence of solution in
$BV(\Omega)$, positive or not, to the problem:
$$
\left\{
\begin{array}{rl}
-{\rm div}\ \sigma+a(x) sign\ u &= f|u|^{1^\star-2} u\cr
\sigma.\nabla u &= |\nabla u|\ {\rm in}\ \Omega\cr
u\ {\rm is\ not \ identically\ zero}, &-\sigma.n (u) = |u|\ {\rm on }\ \partial
\Omega.\end{array}\right.$$
This problem is closely related to the extremal functions for the problem of
the best constant of $W^{1,1}(\Omega)$ into $L^{N\over N-1}(\Omega)$.
LA - eng
KW - BV functions; best constant for Sobolev embeddings.; 1-Laplacian; critical Sobolev exponent; existence
UR - http://eudml.org/doc/197312
ER -
References
top- T. Aubin, Problèmes isopérimétriques et espaces de Sobolev. J. Differential Geom.11 (1976) 573-598.
- T. Aubin, Nonlinear Analysis on manifolds-Monge-Ampère Equations. Grundlehern der Mathematischen Wissenschaften (1982) 252.
- A. Bahri and J.M. Coron, On a non linear elliptic equation involving the critical Sobolev exponent: The effet of the topology of the domain. Comm. Pure Appl. Math.41 (1988) 253-294.
- Bobkov and Ch. Houdré, Some connections between isoperimetric and Sobolev type Inequalities. Mem. Amer. Math. Soc. 616 (1997).
- F. Demengel, Some compactness result for some spaces of functions with bounded derivatives. Arch. Rational Mech. Anal.105 (1989) 123-161.
- F. Demengel and E. Hebey, On some nonlinear equations involving the p-Laplacian with critical Sobolev growth. I. Adv. Partial Differential Equations3 (1998) 533-574.
- I. Ekeland and R. Temam, Convex Analysis and variational problems. North-Holland (1976).
- E. Giusti, Minimal surfaces and functions of bounded variation, notes de cours rédigés par G.H. Williams. Department of Mathematics Australian National University, Canberra (1977), et Birkhaüser (1984).
- E. Hebey, La méthode d'isométrie concentration dans le cas d'un problème non linéaire sur les variétés compactes à bord avec exposant critique de Sobolev. Bull. Sci. Math.116 (1992) 35-51.
- E. Hebey and M. Vaugon, Existence and multiplicity of nodal solutions for nonlinear elliptic equations with critical Sobolev Growth. J. Funct. Anal.119 (1994) 298-318.
- P.L. Lions, La méthode de compacité concentration, I et II. Revista Ibero Americana1 (1985) 145.
- R.V. Kohn and R. Temam, Dual spaces of stress and strains with applications to Hencky plasticity. Appl. Math. Optim.10 (1983) 1-35.
- B. Nazaret, Stability results for some nonlinear elliptic equations involving the p-Laplacian with critical Sobolev growth, COCV, accepted Version française : Prepublication de l'Université de Cergy-Pontoise N 5/98, Avril 1998.
- Talenti, Best constants in Sobolev inequality. Ann. Mat. Pura Appl. (4)110 (1976) 353-372.
- G. Strang and R. Temam, Functions with bounded variations. Arch. Rational Mech. Anal. (1980) 493-527.
- P. Suquet, Sur les équations de la plasticité. Ann. Fac. Sci. Toulouse Math. (6)1 (1979) 77-87.
- Ziemmer, Weakly Differentiable functions. Springer Verlag, Lectures Notes in Math. 120 (1989).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.