Stabilisation frontière de problèmes de Ventcel

Amar Heminna

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 5, page 591-622
  • ISSN: 1292-8119

Abstract

top
The problem of boundary stabilization for the isotropic linear elastodynamic system and the wave equation with Ventcel's conditions are considered (see [12]). The boundary observability and the exact controllability were etablished in [11]. We prove here the enegy decay to zero for the elastodynamic system with stationary Ventcel's conditions by introducing a nonlinear boundary feedback. We also give a boundary feedback leading to arbitrarily large energy decay rates for the elastodynamic system with evolutive Ventcel's conditions. A spectral study proves, finally, that the natural feedback is not sufficient to assure the exponential decay in the case of the wave equation with Ventcel's conditions.

How to cite

top

Heminna, Amar. "Stabilisation frontière de problèmes de Ventcel." ESAIM: Control, Optimisation and Calculus of Variations 5 (2010): 591-622. <http://eudml.org/doc/197334>.

@article{Heminna2010,
abstract = { The problem of boundary stabilization for the isotropic linear elastodynamic system and the wave equation with Ventcel's conditions are considered (see [12]). The boundary observability and the exact controllability were etablished in [11]. We prove here the enegy decay to zero for the elastodynamic system with stationary Ventcel's conditions by introducing a nonlinear boundary feedback. We also give a boundary feedback leading to arbitrarily large energy decay rates for the elastodynamic system with evolutive Ventcel's conditions. A spectral study proves, finally, that the natural feedback is not sufficient to assure the exponential decay in the case of the wave equation with Ventcel's conditions. },
author = {Heminna, Amar},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Élasticité; ondes; problème de Ventcel; contrôlabilité; stabilisation.; elastodynamic systems; wave equation; Venttsel problem; nonlinear boundary feedback; boundary stabilization; energy decay rates; exponential decay},
language = {fre},
month = {3},
pages = {591-622},
publisher = {EDP Sciences},
title = {Stabilisation frontière de problèmes de Ventcel},
url = {http://eudml.org/doc/197334},
volume = {5},
year = {2010},
}

TY - JOUR
AU - Heminna, Amar
TI - Stabilisation frontière de problèmes de Ventcel
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 5
SP - 591
EP - 622
AB - The problem of boundary stabilization for the isotropic linear elastodynamic system and the wave equation with Ventcel's conditions are considered (see [12]). The boundary observability and the exact controllability were etablished in [11]. We prove here the enegy decay to zero for the elastodynamic system with stationary Ventcel's conditions by introducing a nonlinear boundary feedback. We also give a boundary feedback leading to arbitrarily large energy decay rates for the elastodynamic system with evolutive Ventcel's conditions. A spectral study proves, finally, that the natural feedback is not sufficient to assure the exponential decay in the case of the wave equation with Ventcel's conditions.
LA - fre
KW - Élasticité; ondes; problème de Ventcel; contrôlabilité; stabilisation.; elastodynamic systems; wave equation; Venttsel problem; nonlinear boundary feedback; boundary stabilization; energy decay rates; exponential decay
UR - http://eudml.org/doc/197334
ER -

References

top
  1. F. Alabau et V. Komornik, Observabilité, controlabilité et stabilisation frontière du système d'élasticité linéaire. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 519-524.  
  2. A. Bendali et K. Lemrabet, The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation. SIAM J. Appl. Math. 56 (1996) 1664-1693.  
  3. R. Bey, A. Heminna et J.-P. Lohéac, Stabilisation frontière du système de l'élasticité. Nouvelle approche. C. R. Acad. Sci. Paris Sér. I Math.330 (2000) 563-566.  
  4. F. Bourquin, J.-S. Briffaut et M. Collet, On the feedback stabilization : Komornik's method, in Proc. of the 2nd international conference on active control in mechanical engineering. Lyon (1997).  
  5. H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North Holland, Amsterdam (1973).  
  6. R.F. Curtain et H.J. Zwart, An introduction to infinite dimensional linear systems theory. Springer-Verlag, Paris.  
  7. G. Duvaut et J.L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972).  
  8. A. Guesmia, Stabilisation frontière d'un système d'élasticité. C. R. Acad. Sci. Paris Sér. I Math.324 (1997) 1355-1360.  
  9. A. Haraux, Semi-groupes linéaires et équations d'évolutions linéaires périodiques, Publications du laboratoire d'Analyse Numérique, 78011. Université Pierre et Marie Curie, Paris (1978).  
  10. A. Haraux, Systèmes dynamiques dissipatifs et applications. Masson, Paris (1991).  
  11. A. Heminna, Contrôlabilité exacte d'un problème avec conditions de Ventcel évolutives pour le système linéaire de l'élasticité. C. R. Acad. Sci. Paris Sér. I Math.324 (1997) 195-200.  
  12. A. Heminna, Stabilisation de problèmes de Ventcel. C. R. Acad. Sci. Paris Sér. I Math.328 (1999) 1171-1174.  
  13. M.A. Horn, Implications of sharp trace regularity results on boundary tabilization of the system of linear elasticity. J. Math. Anal. Appl. 223 (1998) 126-150.  
  14. T.J.R. Hughes et J.E. Marsden, Mathematical foundations of elasticity. Prentice - Hall Inc., Englewood Cliffs, New Jersey 07632.  
  15. L. Hörmander, Linear partial differential operators. Springer-Verlag, Baud (1969).  
  16. V. Komornik, Exact controllability and stabilization ; The multiplier method. Masson-John Wiley, Paris (1994).  
  17. V. Komornik, Stabilisation rapide de problèmes d'évolution linéaires. C. R. Acad. Sci. Paris Sér. I Math.321 (1995) 581-586.  
  18. J.E. Lagnese, Boundary stabilization of linear elastodynamic systems. SIAM J. Control Optim.21 (1983) 968-984.  
  19. J.E. Lagnese, Uniform asymptotic energy estimates for solutions of the equations of dynamic plane elasticity with nonlinear dissipation at the boundary. Nonlinear Anal.16 (1991) 35-54.  
  20. I. Lasiecka et R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with L 2 ( 0 , ; L 2 ( Γ ) ) -feedback control in the Dirichlet boundary conditions. J. Differential Equations66 (1987) 340-390.  
  21. J.P. LaSalle, Some extensions of Liapounov's second method (1960).  
  22. K. Lemrabet, Problème aux limites de Ventcel dans un domaine non régulier. C. R. Acad. Sci. Paris Sér. I Math.15 (1985) 531-534.  
  23. K. Lemrabet, Étude de divers problèmes aux limites de Ventcel d'origine physique ou mécanique dans des domaines non réguliers. Thèse, USTHB, Alger (1987).  
  24. K. Lemrabet, Problème de Ventcel pour le système de l'élasticité dans un domaine de 3 . C. R. Acad. Sci. Paris Sér. I Math.304 (1987) 151-154.  
  25. J.L. Lions, Contr o ^ labilité exacte, perturbation et stabilisation de systèmes distribués. Masson (1986).  
  26. J.L. Lions et E. Magenes, Problèmes aux limites non homogènes et leurs applications. Dunod, Paris (1968).  
  27. A. Samarsky et V. Andreev, Méthodes aux différences pour équations elliptiques. Éditions de Moscou (1978).  
  28. E. Sanchez-Palencia et D. Leguillon, Computations of singular problems and elasticity. R.M.A. Masson, Paris (1987).  
  29. R. Valid, La mécanique des milieux continus et le calcul des structures. Eyrolles, Paris (1977).  
  30. A.D Wentzell (Ventcel'), On boundary conditions for multidimensional diffusion processes. Theor. Probab. Appl.4 (1959) 164-177.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.