Stabilisation frontière de problèmes de Ventcel
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 5, page 591-622
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topHeminna, Amar. "Stabilisation frontière de problèmes de Ventcel." ESAIM: Control, Optimisation and Calculus of Variations 5 (2010): 591-622. <http://eudml.org/doc/197334>.
@article{Heminna2010,
abstract = {
The problem of boundary stabilization for the isotropic linear
elastodynamic system and the wave equation with Ventcel's
conditions are considered (see [12]). The boundary
observability and the exact controllability were etablished in [11]. We prove here the enegy decay to zero for the elastodynamic
system with stationary Ventcel's conditions by introducing a
nonlinear boundary feedback. We also give a boundary feedback
leading to arbitrarily large energy decay rates for the
elastodynamic system with evolutive Ventcel's conditions. A
spectral study proves, finally, that the natural feedback
is not sufficient to assure the exponential decay in the case of
the wave equation with Ventcel's conditions.
},
author = {Heminna, Amar},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Élasticité; ondes; problème de Ventcel; contrôlabilité; stabilisation.; elastodynamic systems; wave equation; Venttsel problem; nonlinear boundary feedback; boundary stabilization; energy decay rates; exponential decay},
language = {fre},
month = {3},
pages = {591-622},
publisher = {EDP Sciences},
title = {Stabilisation frontière de problèmes de Ventcel},
url = {http://eudml.org/doc/197334},
volume = {5},
year = {2010},
}
TY - JOUR
AU - Heminna, Amar
TI - Stabilisation frontière de problèmes de Ventcel
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 5
SP - 591
EP - 622
AB -
The problem of boundary stabilization for the isotropic linear
elastodynamic system and the wave equation with Ventcel's
conditions are considered (see [12]). The boundary
observability and the exact controllability were etablished in [11]. We prove here the enegy decay to zero for the elastodynamic
system with stationary Ventcel's conditions by introducing a
nonlinear boundary feedback. We also give a boundary feedback
leading to arbitrarily large energy decay rates for the
elastodynamic system with evolutive Ventcel's conditions. A
spectral study proves, finally, that the natural feedback
is not sufficient to assure the exponential decay in the case of
the wave equation with Ventcel's conditions.
LA - fre
KW - Élasticité; ondes; problème de Ventcel; contrôlabilité; stabilisation.; elastodynamic systems; wave equation; Venttsel problem; nonlinear boundary feedback; boundary stabilization; energy decay rates; exponential decay
UR - http://eudml.org/doc/197334
ER -
References
top- F. Alabau et V. Komornik, Observabilité, controlabilité et stabilisation frontière du système d'élasticité linéaire. C. R. Acad. Sci. Paris Sér. I Math. 324 (1997) 519-524.
- A. Bendali et K. Lemrabet, The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation. SIAM J. Appl. Math. 56 (1996) 1664-1693.
- R. Bey, A. Heminna et J.-P. Lohéac, Stabilisation frontière du système de l'élasticité. Nouvelle approche. C. R. Acad. Sci. Paris Sér. I Math.330 (2000) 563-566.
- F. Bourquin, J.-S. Briffaut et M. Collet, On the feedback stabilization : Komornik's method, in Proc. of the 2nd international conference on active control in mechanical engineering. Lyon (1997).
- H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North Holland, Amsterdam (1973).
- R.F. Curtain et H.J. Zwart, An introduction to infinite dimensional linear systems theory. Springer-Verlag, Paris.
- G. Duvaut et J.L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972).
- A. Guesmia, Stabilisation frontière d'un système d'élasticité. C. R. Acad. Sci. Paris Sér. I Math.324 (1997) 1355-1360.
- A. Haraux, Semi-groupes linéaires et équations d'évolutions linéaires périodiques, Publications du laboratoire d'Analyse Numérique, 78011. Université Pierre et Marie Curie, Paris (1978).
- A. Haraux, Systèmes dynamiques dissipatifs et applications. Masson, Paris (1991).
- A. Heminna, Contrôlabilité exacte d'un problème avec conditions de Ventcel évolutives pour le système linéaire de l'élasticité. C. R. Acad. Sci. Paris Sér. I Math.324 (1997) 195-200.
- A. Heminna, Stabilisation de problèmes de Ventcel. C. R. Acad. Sci. Paris Sér. I Math.328 (1999) 1171-1174.
- M.A. Horn, Implications of sharp trace regularity results on boundary tabilization of the system of linear elasticity. J. Math. Anal. Appl. 223 (1998) 126-150.
- T.J.R. Hughes et J.E. Marsden, Mathematical foundations of elasticity. Prentice - Hall Inc., Englewood Cliffs, New Jersey 07632.
- L. Hörmander, Linear partial differential operators. Springer-Verlag, Baud (1969).
- V. Komornik, Exact controllability and stabilization ; The multiplier method. Masson-John Wiley, Paris (1994).
- V. Komornik, Stabilisation rapide de problèmes d'évolution linéaires. C. R. Acad. Sci. Paris Sér. I Math.321 (1995) 581-586.
- J.E. Lagnese, Boundary stabilization of linear elastodynamic systems. SIAM J. Control Optim.21 (1983) 968-984.
- J.E. Lagnese, Uniform asymptotic energy estimates for solutions of the equations of dynamic plane elasticity with nonlinear dissipation at the boundary. Nonlinear Anal.16 (1991) 35-54.
- I. Lasiecka et R. Triggiani, Uniform exponential energy decay of wave equations in a bounded region with -feedback control in the Dirichlet boundary conditions. J. Differential Equations66 (1987) 340-390.
- J.P. LaSalle, Some extensions of Liapounov's second method (1960).
- K. Lemrabet, Problème aux limites de Ventcel dans un domaine non régulier. C. R. Acad. Sci. Paris Sér. I Math.15 (1985) 531-534.
- K. Lemrabet, Étude de divers problèmes aux limites de Ventcel d'origine physique ou mécanique dans des domaines non réguliers. Thèse, USTHB, Alger (1987).
- K. Lemrabet, Problème de Ventcel pour le système de l'élasticité dans un domaine de . C. R. Acad. Sci. Paris Sér. I Math.304 (1987) 151-154.
- J.L. Lions, Contrlabilité exacte, perturbation et stabilisation de systèmes distribués. Masson (1986).
- J.L. Lions et E. Magenes, Problèmes aux limites non homogènes et leurs applications. Dunod, Paris (1968).
- A. Samarsky et V. Andreev, Méthodes aux différences pour équations elliptiques. Éditions de Moscou (1978).
- E. Sanchez-Palencia et D. Leguillon, Computations of singular problems and elasticity. R.M.A. Masson, Paris (1987).
- R. Valid, La mécanique des milieux continus et le calcul des structures. Eyrolles, Paris (1977).
- A.D Wentzell (Ventcel'), On boundary conditions for multidimensional diffusion processes. Theor. Probab. Appl.4 (1959) 164-177.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.