Nonlinear feedback stabilization of a rotating body-beam without damping
Boumediène CHENTOUF; Jean-François COUCHOURON
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 4, page 515-535
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topCHENTOUF, Boumediène, and COUCHOURON, Jean-François. " Nonlinear feedback stabilization of a rotating body-beam without damping ." ESAIM: Control, Optimisation and Calculus of Variations 4 (2010): 515-535. <http://eudml.org/doc/197338>.
@article{CHENTOUF2010,
abstract = {This paper deals with nonlinear
feedback stabilization problem of a flexible beam clamped at a
rigid body and free at the other end. We assume that there is no
damping and the feedback law proposed here consists of a nonlinear
control torque applied to the rigid body and either a boundary
control moment or a nonlinear boundary control force or both of
them applied to the free end of the beam. This nonlinear
feedback, which insures the exponential decay of the beam
vibrations, extends the linear case studied by Laousy et al. to
a more general class of controls.
},
author = {CHENTOUF, Boumediène, COUCHOURON, Jean-François},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Rotating body-beam; non linear control; exponential stability.; nonlinear control; exponential stability; exponential decay of the beam vibrations},
language = {eng},
month = {3},
pages = {515-535},
publisher = {EDP Sciences},
title = { Nonlinear feedback stabilization of a rotating body-beam without damping },
url = {http://eudml.org/doc/197338},
volume = {4},
year = {2010},
}
TY - JOUR
AU - CHENTOUF, Boumediène
AU - COUCHOURON, Jean-François
TI - Nonlinear feedback stabilization of a rotating body-beam without damping
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 4
SP - 515
EP - 535
AB - This paper deals with nonlinear
feedback stabilization problem of a flexible beam clamped at a
rigid body and free at the other end. We assume that there is no
damping and the feedback law proposed here consists of a nonlinear
control torque applied to the rigid body and either a boundary
control moment or a nonlinear boundary control force or both of
them applied to the free end of the beam. This nonlinear
feedback, which insures the exponential decay of the beam
vibrations, extends the linear case studied by Laousy et al. to
a more general class of controls.
LA - eng
KW - Rotating body-beam; non linear control; exponential stability.; nonlinear control; exponential stability; exponential decay of the beam vibrations
UR - http://eudml.org/doc/197338
ER -
References
top- J. Ackermann, Sampled-data control system: Analysis and synthesis, robust system design, Springer-Verlag (1985).
- J. Baillieul and M. Levi, Rotational elastic dynamics. Physica D, 27 (1987) 43-62 .
- P. Bénilan, Équations d'évolution dans un espace de Banach quelconque et applications, Thèse, Paris XI, Orsay (1972).
- P. Bénilan, M.G. Crandal and A. Pazy, Nonlinear evolution equations in Banach spaces, monograph in preparation.
- A.M. Bloch and E.S. Titi, On the dynamics of rotating elastic beams, in Proc. Conf. New Trends Syst. theory, Genoa, Italy, July 9-11, 1990, Conte, Perdon, and Wyman, eds., Cambridge, MA: Birkhäuser (1990).
- H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, London (1973).
- H. Brezis, Analyse Fonctionnelle. Théorie et applications, Masson (1983).
- F. Conrad and B. Rao, Decay of solutions of the wave equation in a star-shaped domain with nonlinear boundary feedback. Asymptotic Analysis,7 (1993) 159-177.
- J.-M. Coron and B. d'Andréa-Novel, Stabilization of a rotating body-beam without damping. IEEE Trans. Automat. Contr., 43 (1998) 608-618.
- M.G. Crandall, Nonlinear semigroups and evolution governed by accretive operators. Pro. Sympo. in pure Math.45 (1986) 305-337.
- C.M. Dafermos and M. Slemrod, Asymptotic behaviour of non linear contractions semi-groups, J. Func. Anal . 14 (1973) 97-106.
- A. Haraux, Systèms Dynamique Dissipatifs et Applications. Collection RMA (17) Masson, Paris (1991).
- V. Jurdjevic and J. P. Quin, Controllability and stability, J. Differential Equations,28 (1978) 381-389.
- V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. , 69 (1990) 33-54.
- V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson and John Wiley (1994).
- H. Laousy, C.Z. Xu and G. Sallet, Boundary feedback stabilization of a rotating body-beam system. IEEE Trans. Automat. Contr., 41 (1996) 241-245.
- O. Morgül, Orientation and stabilization of a flexible beam attached to a rigid body: Planar motion. IEEE Trans. Automat. Contr., 36 (1991) 953-963.
- O. Morgül, Constant angular velocity control of a rotating flexible structure, in Proc. 2nd Conf., ECC'93., Groningen, Netherlands (1993) 299-302.
- O. Morgül, Control of a rotating flexible structure. IEEE Trans. Automat. Contr.39 (1994) 351-356.
- A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag, New York (1983).
- M. Pierre, Perturbations localement lipschitziennes et continues d'opérateurs m-accretifs. Proc. Amer. Math. Soc., 58 (1976) 124-128.
- B. Rao, Decay estimate of solution for hybrid system of flexible structures. Euro. J. Appl. Math.4 (1993) 303-319 .
- C.Z. Xu and J. Baillieul, Stabilizability and stabilization of a rotating body-beam system with torque control. IEEE Trans. Automat. Contr.38 (1993) 1754-1765.
- C.Z. Xu and G. Sallet, Boundary stabilization of a rotating flexible system. Lecture Notes in Control and Information Sciences185, R.F. Curtain, A. Bensoussan and J.L. Lions, eds., Springer Verlag, New York (1992) 347-365.
- A. Zeidler, Non linear functional analysis and its applications, Vol. 2, Springer Verlag, New York (1986).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.