Nonlinear feedback stabilization of a rotating body-beam without damping

Boumediène CHENTOUF; Jean-François COUCHOURON

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 4, page 515-535
  • ISSN: 1292-8119

Abstract

top
This paper deals with nonlinear feedback stabilization problem of a flexible beam clamped at a rigid body and free at the other end. We assume that there is no damping and the feedback law proposed here consists of a nonlinear control torque applied to the rigid body and either a boundary control moment or a nonlinear boundary control force or both of them applied to the free end of the beam. This nonlinear feedback, which insures the exponential decay of the beam vibrations, extends the linear case studied by Laousy et al. to a more general class of controls.

How to cite

top

CHENTOUF, Boumediène, and COUCHOURON, Jean-François. " Nonlinear feedback stabilization of a rotating body-beam without damping ." ESAIM: Control, Optimisation and Calculus of Variations 4 (2010): 515-535. <http://eudml.org/doc/197338>.

@article{CHENTOUF2010,
abstract = {This paper deals with nonlinear feedback stabilization problem of a flexible beam clamped at a rigid body and free at the other end. We assume that there is no damping and the feedback law proposed here consists of a nonlinear control torque applied to the rigid body and either a boundary control moment or a nonlinear boundary control force or both of them applied to the free end of the beam. This nonlinear feedback, which insures the exponential decay of the beam vibrations, extends the linear case studied by Laousy et al. to a more general class of controls. },
author = {CHENTOUF, Boumediène, COUCHOURON, Jean-François},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Rotating body-beam; non linear control; exponential stability.; nonlinear control; exponential stability; exponential decay of the beam vibrations},
language = {eng},
month = {3},
pages = {515-535},
publisher = {EDP Sciences},
title = { Nonlinear feedback stabilization of a rotating body-beam without damping },
url = {http://eudml.org/doc/197338},
volume = {4},
year = {2010},
}

TY - JOUR
AU - CHENTOUF, Boumediène
AU - COUCHOURON, Jean-François
TI - Nonlinear feedback stabilization of a rotating body-beam without damping
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 4
SP - 515
EP - 535
AB - This paper deals with nonlinear feedback stabilization problem of a flexible beam clamped at a rigid body and free at the other end. We assume that there is no damping and the feedback law proposed here consists of a nonlinear control torque applied to the rigid body and either a boundary control moment or a nonlinear boundary control force or both of them applied to the free end of the beam. This nonlinear feedback, which insures the exponential decay of the beam vibrations, extends the linear case studied by Laousy et al. to a more general class of controls.
LA - eng
KW - Rotating body-beam; non linear control; exponential stability.; nonlinear control; exponential stability; exponential decay of the beam vibrations
UR - http://eudml.org/doc/197338
ER -

References

top
  1. J. Ackermann, Sampled-data control system: Analysis and synthesis, robust system design, Springer-Verlag (1985).  Zbl0639.93001
  2. J. Baillieul and M. Levi, Rotational elastic dynamics. Physica D, 27 (1987) 43-62 .  Zbl0644.73054
  3. P. Bénilan, Équations d'évolution dans un espace de Banach quelconque et applications, Thèse, Paris XI, Orsay (1972).  Zbl0246.47068
  4. P. Bénilan, M.G. Crandal and A. Pazy, Nonlinear evolution equations in Banach spaces, monograph in preparation.  
  5. A.M. Bloch and E.S. Titi, On the dynamics of rotating elastic beams, in Proc. Conf. New Trends Syst. theory, Genoa, Italy, July 9-11, 1990, Conte, Perdon, and Wyman, eds., Cambridge, MA: Birkhäuser (1990).  Zbl0759.73036
  6. H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, North-Holland, Amsterdam, London (1973).  Zbl0252.47055
  7. H. Brezis, Analyse Fonctionnelle. Théorie et applications, Masson (1983).  
  8. F. Conrad and B. Rao, Decay of solutions of the wave equation in a star-shaped domain with nonlinear boundary feedback. Asymptotic Analysis,7 (1993) 159-177.  Zbl0791.35011
  9. J.-M. Coron and B. d'Andréa-Novel, Stabilization of a rotating body-beam without damping. IEEE Trans. Automat. Contr., 43 (1998) 608-618.  
  10. M.G. Crandall, Nonlinear semigroups and evolution governed by accretive operators. Pro. Sympo. in pure Math.45 (1986) 305-337.  Zbl0637.47039
  11. C.M. Dafermos and M. Slemrod, Asymptotic behaviour of non linear contractions semi-groups, J. Func. Anal . 14 (1973) 97-106.  Zbl0267.34062
  12. A. Haraux, Systèms Dynamique Dissipatifs et Applications. Collection RMA (17) Masson, Paris (1991).  
  13. V. Jurdjevic and J. P. Quin, Controllability and stability, J. Differential Equations,28 (1978) 381-389.  Zbl0417.93012
  14. V. Komornik and E. Zuazua, A direct method for the boundary stabilization of the wave equation. J. Math. Pures Appl. , 69 (1990) 33-54.  Zbl0636.93064
  15. V. Komornik, Exact Controllability and Stabilization. The Multiplier Method, Masson and John Wiley (1994).  Zbl0937.93003
  16. H. Laousy, C.Z. Xu and G. Sallet, Boundary feedback stabilization of a rotating body-beam system. IEEE Trans. Automat. Contr., 41 (1996) 241-245.  Zbl0847.93026
  17. O. Morgül, Orientation and stabilization of a flexible beam attached to a rigid body: Planar motion. IEEE Trans. Automat. Contr., 36 (1991) 953-963.  
  18. O. Morgül, Constant angular velocity control of a rotating flexible structure, in Proc. 2nd Conf., ECC'93., Groningen, Netherlands (1993) 299-302.  
  19. O. Morgül, Control of a rotating flexible structure. IEEE Trans. Automat. Contr.39 (1994) 351-356.  Zbl0800.93590
  20. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer Verlag, New York (1983).  Zbl0516.47023
  21. M. Pierre, Perturbations localement lipschitziennes et continues d'opérateurs m-accretifs. Proc. Amer. Math. Soc., 58 (1976) 124-128.  Zbl0308.47047
  22. B. Rao, Decay estimate of solution for hybrid system of flexible structures. Euro. J. Appl. Math.4 (1993) 303-319 .  Zbl0786.73039
  23. C.Z. Xu and J. Baillieul, Stabilizability and stabilization of a rotating body-beam system with torque control. IEEE Trans. Automat. Contr.38 (1993) 1754-1765.  Zbl0825.93675
  24. C.Z. Xu and G. Sallet, Boundary stabilization of a rotating flexible system. Lecture Notes in Control and Information Sciences185, R.F. Curtain, A. Bensoussan and J.L. Lions, eds., Springer Verlag, New York (1992) 347-365.  Zbl0792.93069
  25. A. Zeidler, Non linear functional analysis and its applications, Vol. 2, Springer Verlag, New York (1986).  Zbl0583.47050

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.