Remarks on exact controllability for the Navier-Stokes equations
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 6, page 39-72
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topImanuvilov, Oleg Yu.. "Remarks on exact controllability for the Navier-Stokes equations." ESAIM: Control, Optimisation and Calculus of Variations 6 (2010): 39-72. <http://eudml.org/doc/197343>.
@article{Imanuvilov2010,
abstract = {
We study the local exact
controllability problem for the Navier-Stokes equations
that describe an incompressible fluid flow in a bounded domain
Ω with control distributed in a subdomain $\omega\subset\Omega\subset \mathbb\{R\}^n, n\in\\{2,3\\}$.
The result that we obtained in this paper is
as follows. Suppose that $\hat v(t,x)$ is a given
solution of the
Navier-Stokes equations. Let $ v_0(x)$
be a given initial condition
and $\Vert \hat v(0,\cdot) - v_0 \Vert < \varepsilon$
where ε is small enough. Then there
exists a locally distributed control $u,
\text\{supp\}\, u\subset (0,T)\times \omega
$ such that the solution v(t,x) of
the Navier-Stokes equations:
$$
\partial\_tv-\Delta v+(v,\nabla)v=\nabla p+u+f,
\,\, \text\{\rm div\}\, v=0,\,\, v\vert\_\{\partial\Omega\}=0,
\,\, v \vert\_\{t=0\} = v\_0
$$
coincides with $\hat v(t,x)$ at the instant T : $v(T,x) \equiv \hat v(T,x)$.
},
author = {Imanuvilov, Oleg Yu.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Locally distributed control; Navier-Stokes system.; locally distributed control; Navier-Stokes system; Carleman estimate},
language = {eng},
month = {3},
pages = {39-72},
publisher = {EDP Sciences},
title = {Remarks on exact controllability for the Navier-Stokes equations},
url = {http://eudml.org/doc/197343},
volume = {6},
year = {2010},
}
TY - JOUR
AU - Imanuvilov, Oleg Yu.
TI - Remarks on exact controllability for the Navier-Stokes equations
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 6
SP - 39
EP - 72
AB -
We study the local exact
controllability problem for the Navier-Stokes equations
that describe an incompressible fluid flow in a bounded domain
Ω with control distributed in a subdomain $\omega\subset\Omega\subset \mathbb{R}^n, n\in\{2,3\}$.
The result that we obtained in this paper is
as follows. Suppose that $\hat v(t,x)$ is a given
solution of the
Navier-Stokes equations. Let $ v_0(x)$
be a given initial condition
and $\Vert \hat v(0,\cdot) - v_0 \Vert < \varepsilon$
where ε is small enough. Then there
exists a locally distributed control $u,
\text{supp}\, u\subset (0,T)\times \omega
$ such that the solution v(t,x) of
the Navier-Stokes equations:
$$
\partial_tv-\Delta v+(v,\nabla)v=\nabla p+u+f,
\,\, \text{\rm div}\, v=0,\,\, v\vert_{\partial\Omega}=0,
\,\, v \vert_{t=0} = v_0
$$
coincides with $\hat v(t,x)$ at the instant T : $v(T,x) \equiv \hat v(T,x)$.
LA - eng
KW - Locally distributed control; Navier-Stokes system.; locally distributed control; Navier-Stokes system; Carleman estimate
UR - http://eudml.org/doc/197343
ER -
References
top- V.M. Alekseev, V.M. Tikhomirov and S.V. Fomin, Optimal control. Consultants Bureau, New York (1987).
- D. Chae, O.Yu. Imanuvilov and S.M. Kim, Exact controllability for semilinear parabolic equations with Neumann boundary conditions. J. Dynam. Control Systems2 (1996) 449-483.
- J.-M. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier-Slip boundary conditions. ESAIM: COCV1 (1996) 35-75.
- J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl.75 (1996) 155-188.
- J.-M. Coron, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris Sér. I Math.317 (1993) 271-276.
- J.-M. Coron and A.V. Fursikov, Global exact controllability of the 2-D Navier-Stokes equations on manifold without boundary. Russian J. Math. Phys.4 (1996) 1-20.
- C. Fabre, Résultats d'unicité pour les équations de Stokes et applications au contrôle. C. R. Acad. Sci. Paris Sér. I Math.322 (1996) 1191-1196.
- C. Fabre and G. Lebeau, Prolongement unique des solutions de l'équation de Stokes. Comm. Partial Differential Equations21 (1996) 573-596.
- A.V. Fursikov and O.Yu. Imanuvilov, Local exact controllability of two dimensional Navier-Stokes system with control on the part of the boundary. Sb. Math.187 (1996) 1355-1390.
- A.V. Fursikov and O.Yu. Imanuvilov, Local exact boundary controllability of the Boussinesq equation. SIAM J. Control Optim.36 (1988) 391-421.
- A.V. Fursikov and O.Yu. Imanuvilov, Local exact controllability of the Navier-Stokes Equations. C. R. Acad. Sci. Paris Sér. I Math.323 (1996) 275-280.
- A.V. Fursikov and O.Yu. Imanuvilov, Controllability of evolution equations, Lecture notes series (1996), no. 34 SNU, Seoul.
- A.V. Fursikov and O.Yu. Imanuvilov, On approximate controllability of the Stokes system. Ann. Fac. Sci. Toulouse11 (1993) 205-232.
- A.V. Fursikov and O.Yu. Imanuvilov, Exact controllability of the Navier-Stokes equations and the Boussinesq system. Russian Math. Surveys54 (1999) 565-618.
- O. Glass, Contrôlabilité de l'équation d'Euler tridimensionnelle pour les fluides parfaits incompressibles, Séminaire sur les Équations aux Dérivées Partielles, 1997-1998, Exp No XV. École Polytechnique, Palaiseau (1998) 11.
- O. Glass, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles en dimension 3. C. R. Acad. Sci. Paris Sér. I Math. (1997) 987-992.
- L. Hörmander, Linear partial differential operators. Springer-Verlag, Berlin (1963).
- T. Horsin, On the controllability of the Burgers equations. ESAIM: COCV3 (1998) 83-95.
- O.Yu. Imanuvilov, On exact controllability for the Navier-Stokes equations. ESAIM: COCV3 (1998) 97-131.
- O.Yu. Imanuvilov, Boundary controllability of parabolic equations. Sb. Math.186 (1995) 879-900.
- O.Yu. Imanuvilov, Local exact controllability for the 2-D Navier-Stokes equations with the Navier slip boundary conditions. Lecture Notes in Phys.491 (1977) 148-168.
- O.Yu. Imanuvilov and M. Yamamoto, On Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, UTMS 98-46.
- A.N. Kolmogorov and S.V. Fomin, Introductory real analysis. Dover Publications, INC, New York (1996).
- O.A. Ladyzenskaja and N.N. Ural'ceva, Linear and quasilinear equations of elliptic type. Academic Press, New York (1968).
- J.L. Lions, Contrôle des systèmes distribués singuliers. Gauthier-Villars, Paris (1983).
- J.L. Lions, Optimal control of systems governed by partial differential equations. Springer-Verlag (1971).
- J.-L. Lions, Are there connections between turbulence and controllability?, in 9e Conférence internationale de l'INRIA. Antibes (1990).
- J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems. Springer-Verlag, Berlin (1971).
- M. Taylor, Pseudodifferential operators. Princeton Univ. Press (1981).
- M. Taylor, Pseudodifferential operators and Nonlinear PDE. Birkhäuser (1991).
- R. Temam, Navier-Stokes equations. North-Holland Publishing Company, Amsterdam (1979).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.