Remarks on exact controllability for the Navier-Stokes equations

Oleg Yu. Imanuvilov

ESAIM: Control, Optimisation and Calculus of Variations (2010)

  • Volume: 6, page 39-72
  • ISSN: 1292-8119

Abstract

top
We study the local exact controllability problem for the Navier-Stokes equations that describe an incompressible fluid flow in a bounded domain Ω with control distributed in a subdomain ω Ω n , n { 2 , 3 } . The result that we obtained in this paper is as follows. Suppose that v ^ ( t , x ) is a given solution of the Navier-Stokes equations. Let v 0 ( x ) be a given initial condition and v ^ ( 0 , · ) - v 0 < ε where ε is small enough. Then there exists a locally distributed control u , supp u ( 0 , T ) × ω such that the solution v(t,x) of the Navier-Stokes equations: t v - Δ v + ( v , ) v = p + u + f , div v = 0 , v | Ω = 0 , v | t = 0 = v 0 coincides with v ^ ( t , x ) at the instant T : v ( T , x ) v ^ ( T , x ) .

How to cite

top

Imanuvilov, Oleg Yu.. "Remarks on exact controllability for the Navier-Stokes equations." ESAIM: Control, Optimisation and Calculus of Variations 6 (2010): 39-72. <http://eudml.org/doc/197343>.

@article{Imanuvilov2010,
abstract = { We study the local exact controllability problem for the Navier-Stokes equations that describe an incompressible fluid flow in a bounded domain Ω with control distributed in a subdomain $\omega\subset\Omega\subset \mathbb\{R\}^n, n\in\\{2,3\\}$. The result that we obtained in this paper is as follows. Suppose that $\hat v(t,x)$ is a given solution of the Navier-Stokes equations. Let $ v_0(x)$ be a given initial condition and $\Vert \hat v(0,\cdot) - v_0 \Vert < \varepsilon$ where ε is small enough. Then there exists a locally distributed control $u, \text\{supp\}\, u\subset (0,T)\times \omega $ such that the solution v(t,x) of the Navier-Stokes equations: $$ \partial\_tv-\Delta v+(v,\nabla)v=\nabla p+u+f, \,\, \text\{\rm div\}\, v=0,\,\, v\vert\_\{\partial\Omega\}=0, \,\, v \vert\_\{t=0\} = v\_0 $$ coincides with $\hat v(t,x)$ at the instant T : $v(T,x) \equiv \hat v(T,x)$. },
author = {Imanuvilov, Oleg Yu.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Locally distributed control; Navier-Stokes system.; locally distributed control; Navier-Stokes system; Carleman estimate},
language = {eng},
month = {3},
pages = {39-72},
publisher = {EDP Sciences},
title = {Remarks on exact controllability for the Navier-Stokes equations},
url = {http://eudml.org/doc/197343},
volume = {6},
year = {2010},
}

TY - JOUR
AU - Imanuvilov, Oleg Yu.
TI - Remarks on exact controllability for the Navier-Stokes equations
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2010/3//
PB - EDP Sciences
VL - 6
SP - 39
EP - 72
AB - We study the local exact controllability problem for the Navier-Stokes equations that describe an incompressible fluid flow in a bounded domain Ω with control distributed in a subdomain $\omega\subset\Omega\subset \mathbb{R}^n, n\in\{2,3\}$. The result that we obtained in this paper is as follows. Suppose that $\hat v(t,x)$ is a given solution of the Navier-Stokes equations. Let $ v_0(x)$ be a given initial condition and $\Vert \hat v(0,\cdot) - v_0 \Vert < \varepsilon$ where ε is small enough. Then there exists a locally distributed control $u, \text{supp}\, u\subset (0,T)\times \omega $ such that the solution v(t,x) of the Navier-Stokes equations: $$ \partial_tv-\Delta v+(v,\nabla)v=\nabla p+u+f, \,\, \text{\rm div}\, v=0,\,\, v\vert_{\partial\Omega}=0, \,\, v \vert_{t=0} = v_0 $$ coincides with $\hat v(t,x)$ at the instant T : $v(T,x) \equiv \hat v(T,x)$.
LA - eng
KW - Locally distributed control; Navier-Stokes system.; locally distributed control; Navier-Stokes system; Carleman estimate
UR - http://eudml.org/doc/197343
ER -

References

top
  1. V.M. Alekseev, V.M. Tikhomirov and S.V. Fomin, Optimal control. Consultants Bureau, New York (1987).  
  2. D. Chae, O.Yu. Imanuvilov and S.M. Kim, Exact controllability for semilinear parabolic equations with Neumann boundary conditions. J. Dynam. Control Systems2 (1996) 449-483.  
  3. J.-M. Coron, On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier-Slip boundary conditions. ESAIM: COCV1 (1996) 35-75.  
  4. J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl.75 (1996) 155-188.  
  5. J.-M. Coron, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels. C. R. Acad. Sci. Paris Sér. I Math.317 (1993) 271-276.  
  6. J.-M. Coron and A.V. Fursikov, Global exact controllability of the 2-D Navier-Stokes equations on manifold without boundary. Russian J. Math. Phys.4 (1996) 1-20.  
  7. C. Fabre, Résultats d'unicité pour les équations de Stokes et applications au contrôle. C. R. Acad. Sci. Paris Sér. I Math.322 (1996) 1191-1196.  
  8. C. Fabre and G. Lebeau, Prolongement unique des solutions de l'équation de Stokes. Comm. Partial Differential Equations21 (1996) 573-596.  
  9. A.V. Fursikov and O.Yu. Imanuvilov, Local exact controllability of two dimensional Navier-Stokes system with control on the part of the boundary. Sb. Math.187 (1996) 1355-1390.  
  10. A.V. Fursikov and O.Yu. Imanuvilov, Local exact boundary controllability of the Boussinesq equation. SIAM J. Control Optim.36 (1988) 391-421.  
  11. A.V. Fursikov and O.Yu. Imanuvilov, Local exact controllability of the Navier-Stokes Equations. C. R. Acad. Sci. Paris Sér. I Math.323 (1996) 275-280.  
  12. A.V. Fursikov and O.Yu. Imanuvilov, Controllability of evolution equations, Lecture notes series (1996), no. 34 SNU, Seoul.  
  13. A.V. Fursikov and O.Yu. Imanuvilov, On approximate controllability of the Stokes system. Ann. Fac. Sci. Toulouse11 (1993) 205-232.  
  14. A.V. Fursikov and O.Yu. Imanuvilov, Exact controllability of the Navier-Stokes equations and the Boussinesq system. Russian Math. Surveys54 (1999) 565-618.  
  15. O. Glass, Contrôlabilité de l'équation d'Euler tridimensionnelle pour les fluides parfaits incompressibles, Séminaire sur les Équations aux Dérivées Partielles, 1997-1998, Exp No XV. École Polytechnique, Palaiseau (1998) 11.  
  16. O. Glass, Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles en dimension 3. C. R. Acad. Sci. Paris Sér. I Math. (1997) 987-992.  
  17. L. Hörmander, Linear partial differential operators. Springer-Verlag, Berlin (1963).  
  18. T. Horsin, On the controllability of the Burgers equations. ESAIM: COCV3 (1998) 83-95.  
  19. O.Yu. Imanuvilov, On exact controllability for the Navier-Stokes equations. ESAIM: COCV3 (1998) 97-131.  
  20. O.Yu. Imanuvilov, Boundary controllability of parabolic equations. Sb. Math.186 (1995) 879-900.  
  21. O.Yu. Imanuvilov, Local exact controllability for the 2-D Navier-Stokes equations with the Navier slip boundary conditions. Lecture Notes in Phys.491 (1977) 148-168.  
  22. O.Yu. Imanuvilov and M. Yamamoto, On Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, UTMS 98-46.  
  23. A.N. Kolmogorov and S.V. Fomin, Introductory real analysis. Dover Publications, INC, New York (1996).  
  24. O.A. Ladyzenskaja and N.N. Ural'ceva, Linear and quasilinear equations of elliptic type. Academic Press, New York (1968).  
  25. J.L. Lions, Contrôle des systèmes distribués singuliers. Gauthier-Villars, Paris (1983).  
  26. J.L. Lions, Optimal control of systems governed by partial differential equations. Springer-Verlag (1971).  
  27. J.-L. Lions, Are there connections between turbulence and controllability?, in 9e Conférence internationale de l'INRIA. Antibes (1990).  
  28. J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems. Springer-Verlag, Berlin (1971).  
  29. M. Taylor, Pseudodifferential operators. Princeton Univ. Press (1981).  
  30. M. Taylor, Pseudodifferential operators and Nonlinear PDE. Birkhäuser (1991).  
  31. R. Temam, Navier-Stokes equations. North-Holland Publishing Company, Amsterdam (1979).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.