Optimal control of stationary, low Mach number, highly nonisothermal, viscous flows
Max D. Gunzburger; O. Yu. Imanuvilov
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 5, page 477-500
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- F. Durst, A. Galjukov, Y. Makarov, M. Shafer, P. Voinovich and A. Zhmakin, Efficient 3D unstructured grid algorithms for modelling of chemical vapour deposition in horizontal reactors, in Simulation of Semiconductor Devices and Processes, Vol. 6, edited by H. Ryssel and P. Pichler (1995) 258-261.
- N. Efimov and S. Stechkin, Approximative compactness and Tchebycheff sets. Soviet Math.2 (1961) 1226-1228.
- E. Einset and K. Jensen, Finite element solution of three-dimensional mixed convection gas flows in horizontal channels using preconditioned iterative methods. Int. J. Numer. Meth. Engrg.14 (1992) 817-841.
- C. Forester and A. Emery, A computational method for low Mach number unsteady compressible free convective flows. J. Comput. Phys.10 (1972) 487-502.
- J.-L. Lions and E. Magenes, Non-homogeneous Boundary Value Problems and Applications 1. Springer, New York (1972).
- Y. Makarov and A. Zhmakin, On the flow regimes in VPE reactors. J. Cryst. Growth94 (1989) 537-550.
- J. Serrin, Mathematical priciples of classical fluid mechanics, in Handbuch der Physik VIII/1, edited by S. Flügge and C. Truesdell. Springer (1959) 1-125.
- R. Temam, Navier-Stokes Equations. North-Holland, Amsterdam (1979).
- L. Vlasov, Approximate properties of sets in normed linear spaces. Russian Math. Surveys28 (1973) 1-66.