Page 1 Next

## Displaying 1 – 20 of 21

Showing per page

### Comparison of active control techniques over a dihedral plane

ESAIM: Control, Optimisation and Calculus of Variations

This work is devoted to the numerical comparison of four active control techniques in order to increase the pressure recovery generated by the deceleration of a slightly compressible viscous flow over a dihedral plane. It is performed by the use of vortex generator jets and intrusive sensors. The governing equations, the two-dimensional direct numerical simulation code and the flow configuration are first briefly recalled. Then, the objective of the control is carefully displayed, and the uncontrolled...

### Comparison of active control techniques over a dihedral plane

ESAIM: Control, Optimisation and Calculus of Variations

This work is devoted to the numerical comparison of four active control techniques in order to increase the pressure recovery generated by the deceleration of a slightly compressible viscous flow over a dihedral plane. It is performed by the use of vortex generator jets and intrusive sensors. The governing equations, the two-dimensional direct numerical simulation code and the flow configuration are first briefly recalled. Then, the objective of the control is carefully displayed, and the uncontrolled...

### Control of transonic shock positions

ESAIM: Control, Optimisation and Calculus of Variations

We wish to show how the shock position in a nozzle could be controlled. Optimal control theory and algorithm is applied to the transonic equation. The difficulty is that the derivative with respect to the shock position involves a Dirac mass. The one dimensional case is solved, the two dimensional one is analyzed .

### Control of Transonic Shock Positions

ESAIM: Control, Optimisation and Calculus of Variations

We wish to show how the shock position in a nozzle could be controlled. Optimal control theory and algorithm is applied to the transonic equation. The difficulty is that the derivative with respect to the shock position involves a Dirac mass. The one dimensional case is solved, the two dimensional one is analyzed .

### Existence of classical solutions and feedback stabilization for the flow in gas networks

ESAIM: Control, Optimisation and Calculus of Variations

We consider the flow of gas through pipelines controlled by a compressor station. Under a subsonic flow assumption we prove the existence of classical solutions for a given finite time interval. The existence result is used to construct Riemannian feedback laws and to prove a stabilization result for a coupled system of gas pipes with a compressor station. We introduce a Lyapunov function and prove exponential decay with respect to the L2-norm.

### Existence of classical solutions and feedback stabilization for the flow in gas networks

ESAIM: Control, Optimisation and Calculus of Variations

We consider the flow of gas through pipelines controlled by a compressor station. Under a subsonic flow assumption we prove the existence of classical solutions for a given finite time interval. The existence result is used to construct Riemannian feedback laws and to prove a stabilization result for a coupled system of gas pipes with a compressor station. We introduce a Lyapunov function and prove exponential decay with respect to the L2-norm.

### Integrated Design of an Active Flow Control System Using a Time-Dependent Adjoint Method

Mathematical Modelling of Natural Phenomena

An exploratory study is performed to investigate the use of a time-dependent discrete adjoint methodology for design optimization of a high-lift wing configuration augmented with an active flow control system. The location and blowing parameters associated with a series of jet actuation orifices are used as design variables. In addition, a geometric parameterization scheme is developed to provide a compact set of design variables describing the wing...

### Linear independence of boundary traces of eigenfunctions of elliptic and Stokes operators and applications

Applicationes Mathematicae

This paper is divided into two parts and focuses on the linear independence of boundary traces of eigenfunctions of boundary value problems. Part I deals with second-order elliptic operators, and Part II with Stokes (and Oseen) operators. Part I: Let ${\lambda }_{i}$ be an eigenvalue of a second-order elliptic operator defined on an open, sufficiently smooth, bounded domain Ω in ℝⁿ, with Neumann homogeneous boundary conditions on Γ = tial Ω. Let ${{\phi }_{ij}}_{j=1}^{{\ell }_{i}}$ be the corresponding linearly independent (normalized) eigenfunctions...

### Local exact controllability for the $1$-d compressible Navier-Stokes equations

Séminaire Laurent Schwartz — EDP et applications

In this talk, I will present a recent result obtained in [6] with O. Glass, S. Guerrero and J.-P. Puel on the local exact controllability of the $1$-d compressible Navier-Stokes equations. The goal of these notes is to give an informal presentation of this article and we refer the reader to it for extensive details.

### Local null controllability of a two-dimensional fluid-structure interaction problem

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we prove a controllability result for a fluid-structure interaction problem. In dimension two, a rigid structure moves into an incompressible fluid governed by Navier-Stokes equations. The control acts on a fixed subset of the fluid domain. We prove that, for small initial data, this system is null controllable, that is, for a given $T>0$, the system can be driven at rest and the structure to its reference configuration at time $T$. To show this result, we first consider a linearized system....

### Local null controllability of a two-dimensional fluid-structure interaction problem

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we prove a controllability result for a fluid-structure interaction problem. In dimension two, a rigid structure moves into an incompressible fluid governed by Navier-Stokes equations. The control acts on a fixed subset of the fluid domain. We prove that, for small initial data, this system is null controllable, that is, for a given T > 0, the system can be driven at rest and the structure to its reference configuration at time T. To show this result, we first consider a linearized system....

### Multidisciplinary design optimization of film-cooled gas turbine blades.

Mathematical Problems in Engineering

### On the mathematical analysis and optimization of chemical vapor infiltration in materials science

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

### On the Mathematical Analysis and Optimization of Chemical Vapor Infiltration in Materials Science

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we present an analysis of the partial differential equations that describe the Chemical Vapor Infiltration (CVI) processes. The mathematical model requires at least two partial differential equations, one describing the gas phase and one corresponding to the solid phase. A key difficulty in the process is the long processing times that are typically required. We address here the issue of optimization and show that we can choose appropriate pressure and temperature to minimize these...

### Optimal control of linearized compressible Navier–Stokes equations

ESAIM: Control, Optimisation and Calculus of Variations

We study an optimal boundary control problem for the two dimensional unsteady linearized compressible Navier–Stokes equations in a rectangle. The control acts through the Dirichlet boundary condition. We first establish the existence and uniqueness of the solution for the two-dimensional unsteady linearized compressible Navier–Stokes equations in a rectangle with inhomogeneous Dirichlet boundary data, not necessarily smooth. Then, we prove the existence and uniqueness of the optimal solution over...

### Optimal control of stationary, low mach number, highly nonisothermal, viscous flows

ESAIM: Control, Optimisation and Calculus of Variations

### Optimal control of stationary, low Mach number, highly nonisothermal, viscous flows

ESAIM: Control, Optimisation and Calculus of Variations

An optimal control problem for a model for stationary, low Mach number, highly nonisothermal, viscous flows is considered. The control problem involves the minimization of a measure of the distance between the velocity field and a given target velocity field. The existence of solutions of a boundary value problem for the model equations is established as is the existence of solutions of the optimal control problem. Then, a derivation of an optimality system, i.e., a boundary value problem from...

### Relaxation models of phase transition flows

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we propose a general framework for the construction of pressure law for phase transition. These equations of state are particularly suitable for a use in a relaxation finite volume scheme. The approach is based on a constrained convex optimization problem on the mixture entropy. It is valid for both miscible and immiscible mixtures. We also propose a rough pressure law for modelling a super-critical fluid.

### The SQP method for control constrained optimal control of the Burgers equation

ESAIM: Control, Optimisation and Calculus of Variations

A Lagrange–Newton–SQP method is analyzed for the optimal control of the Burgers equation. Distributed controls are given, which are restricted by pointwise lower and upper bounds. The convergence of the method is proved in appropriate Banach spaces. This proof is based on a weak second-order sufficient optimality condition and the theory of Newton methods for generalized equations in Banach spaces. For the numerical realization a primal-dual active set strategy is applied. Numerical examples are...

### The SQP method for control constrained optimal control of the Burgers equation

ESAIM: Control, Optimisation and Calculus of Variations

A Lagrange–Newton–SQP method is analyzed for the optimal control of the Burgers equation. Distributed controls are given, which are restricted by pointwise lower and upper bounds. The convergence of the method is proved in appropriate Banach spaces. This proof is based on a weak second-order sufficient optimality condition and the theory of Newton methods for generalized equations in Banach spaces. For the numerical realization a primal-dual active set strategy is applied. Numerical examples are...

Page 1 Next