# Image deblurring, spectrum interpolation and application to satellite imaging

Sylvain Durand; François Malgouyres; Bernard Rougé

ESAIM: Control, Optimisation and Calculus of Variations (2010)

- Volume: 5, page 445-475
- ISSN: 1292-8119

## Access Full Article

top## Abstract

top## How to cite

topDurand, Sylvain, Malgouyres, François, and Rougé, Bernard. "Image deblurring, spectrum interpolation and application to satellite imaging." ESAIM: Control, Optimisation and Calculus of Variations 5 (2010): 445-475. <http://eudml.org/doc/197371>.

@article{Durand2010,

abstract = {
This paper deals with two complementary methods in noisy image
deblurring: a nonlinear shrinkage of wavelet-packets coefficients called FCNR
and Rudin-Osher-Fatemi's variational method. The FCNR has for objective to
obtain a restored image with a white noise. It will prove to be very efficient
to restore an image after an invertible blur but limited in the opposite
situation. Whereas the Total Variation based method, with its ability to
reconstruct the lost frequencies by interpolation, is very well adapted to
non-invertible blur, but that it tends to erase low contrast textures. This
complementarity is highlighted when the methods are applied to the restoration
of satellite SPOT images.
},

author = {Durand, Sylvain, Malgouyres, François, Rougé, Bernard},

journal = {ESAIM: Control, Optimisation and Calculus of Variations},

keywords = {Image restoration; deblurring; wavelet-packets; Total Variation;
spectrum interpolation. ; image restoration,; total variation; spectrum interpolation},

language = {eng},

month = {3},

pages = {445-475},

publisher = {EDP Sciences},

title = {Image deblurring, spectrum interpolation and application to satellite imaging},

url = {http://eudml.org/doc/197371},

volume = {5},

year = {2010},

}

TY - JOUR

AU - Durand, Sylvain

AU - Malgouyres, François

AU - Rougé, Bernard

TI - Image deblurring, spectrum interpolation and application to satellite imaging

JO - ESAIM: Control, Optimisation and Calculus of Variations

DA - 2010/3//

PB - EDP Sciences

VL - 5

SP - 445

EP - 475

AB -
This paper deals with two complementary methods in noisy image
deblurring: a nonlinear shrinkage of wavelet-packets coefficients called FCNR
and Rudin-Osher-Fatemi's variational method. The FCNR has for objective to
obtain a restored image with a white noise. It will prove to be very efficient
to restore an image after an invertible blur but limited in the opposite
situation. Whereas the Total Variation based method, with its ability to
reconstruct the lost frequencies by interpolation, is very well adapted to
non-invertible blur, but that it tends to erase low contrast textures. This
complementarity is highlighted when the methods are applied to the restoration
of satellite SPOT images.

LA - eng

KW - Image restoration; deblurring; wavelet-packets; Total Variation;
spectrum interpolation. ; image restoration,; total variation; spectrum interpolation

UR - http://eudml.org/doc/197371

ER -

## References

top- R. Acart and C. Vogel, Analysis of bounded variation methods for ill-posed problems. Inverse Problems10 (1994) 1217-1229. Zbl0809.35151
- H.C. Andrews and B.R. Hunt, Digital signal processing. Tech. Englewood Cliffs, NJ: Prentice-Hall (1977).
- S.M. Berman, Sojournes and Extremes os Stochastic Processes. Wadsworth, Reading, MA (1989).
- A. Cohen, R. De Vore, P. Petrushev and H. Xu, Nonlinear Approximation and the Space$BV\left({\mathbb{R}}^{2}\right)$ (preprint).
- V. Caselles, J.L. Lisani, J.M. Morel and G. Sapiro, Shape Preserving Local Histogram Modification. IEEE Trans. Image Process.8 (1999).
- A. Chambolle, R.A. De Vore, N. Lee and B.J. Lucier, Nonlinear Wavelet Image Processing: Variational Problems, Compression and Noise Removal through Wavelet Shrinkage. Preprint CEREMADE No. 9728, September 1997, short version in: IEEE Trans. Image Process.7 (1998) 319-335. Zbl0993.94507
- A. Chambolle and P.L. Lions, Restauration de données par minimisation de la variation Total et variantes d'ordre supérieur, in Proc. of GRETSI. Juan-les-Pins, France (1995).
- A. Chambolle and P.L. Lions, Image recovery via Total Variation minimisation and related problems. Numer. Math.76 (1997) 167-188. IEEE Trans. Image Process. Zbl0874.68299
- R.H. Chan, T.F. Chan and C Wong, Cosine Transform Based Preconditioners for Total Variation Deblurring. UCLA Math Department CAM Report 95-23 (1995).
- R.R. Coifman and D.L. Donoho, Translation-invariant de-noising. Technical Report 475, Standford University (1995). Zbl0866.94008
- R.R. Coifman, Y. Meyer and M.V. Wickerhauser, Wavelet analysis and signal processing. In Wavelets and their Applications, edited by B. Ruskai et al., Boston, Jones and Barlett (1992) 153-178. Zbl0792.94004
- G. Demoment, Image reconstruction and restoration: Overview of Common Estimation Structures and Problems. IEEE Trans. Acoust. Speech Signal Process.37 (1989). Zbl0709.93538
- D. Donoho and I.M. Johnstone, Minimax Estimation via wavelet shrinkage. Tech. Report, Dept. of Stat., Stanford Univ. (1992). Zbl0935.62041
- D.L. Donoho and I.M. Johnstone, Ideal spatial adaptation by wavelet shrinkage. Biometrika81 (1994) 425-455. Zbl0815.62019
- L.C. Evans and R.F. Gariepy, Measure theory and fine properties of functions. Studies in advanced mathematics, CRS Press Inc. (1992). Zbl0804.28001
- F. Guichard and F. Malgouyres, Total Variation Based interpolation, in Proc. of European Signal Processing Conference (EUSIPCO-98), Vol. 3 (1998) 1741-1744.
- I.M. Johnstone and B.W. Silverman, Wavelet threshold estimators for data with correlated noise. Technical report, Standford University (1994). Zbl0886.62044
- T. Kailath, A View of Three Decades of Linear Filtering Theory. IEEE Trans. Inform. TheoryIT20 (1974). Zbl0307.93040
- J. Kalifa, Restauration minimax et déconvolution dans un base d'ondelettes miroirs. Thèse, École Polytechnique (1999).
- J. Kalifa, S. Mallat and B. Rougé, Restauration d'images par paquets d'ondelettes. 16e Colloque GRETSI (1997).
- J. Kalifa, S. Mallat and B. Rougé, Image Deconvolution in Mirror Wavelet Bases. IEEE, ICIP'98.
- H.J. Landau and H.O. Pollak, Prolate Speroidal Wave Functions, Fourier Analysis and Uncertainty -III: The Dimension of the Space of Essentially Time and Band-Limited Signals. The Bell systeme technical Journal (1962). Zbl0184.08603
- M. Lindenbaum, M. Fischer and A. Bruckstein, On Gabor's contribution to image enhancement. PR.27 (1994) 1-8.
- S. Mallat, A theory for multiresolution signal decomposition: The wavelet representation. IEEE Trans. Patern Analysis and Machine IntelligenceII (1989). Zbl0709.94650
- S. Mallat, A Wavelet Tour of Signal Processing. Academic Press (1998). Zbl0937.94001
- Y. Meyer, Ondelettes et opérateurs. Hermann (1990) Tome 1. Zbl0694.41037
- Y. Meyer, Les ondelettes, algorithmes et applications. Armand Colin (1992).
- M. Nikolova, Local strong homogeneity of a regularized estimator. SIAM (to appear). Zbl0991.94015
- B. Rougé, Remarks about space-frequency and space-scale to clean and restore noisy images in satellite frameworks. Progress in wavelets and applications, edited by Y.Meyer and S. Roques Frontières. Gif-sur-Yvette 1993 (Proceedings Toulouse conference). Zbl1114.68587
- B. Rougé, Fixed Chosen Noise Restauration (FCNR). IEEE 95 Philadelphia (U.S.A.).
- L. Rudin, S. Osher and E. Fatemi, Nonlinear Total Variation based noise removal algorithms. Physica D60 (1992) 259-268. Zbl0780.49028

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.