Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics
ESAIM: Control, Optimisation and Calculus of Variations (2010)
- Volume: 4, page 1-35
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- M.K. Bennani and P. Rouchon, Robust stabilization of flat and chained systems, in European Control Conference (ECC) (1995) 2642-2646.
- R.W. Brockett, Asymptotic stability and feedback stabilization, Differential Geometric Control Theory, R.S. Millman R.W. Brockett and H.H. Sussmann Eds., Birkauser (1983).
- C. Canudas de Wit and O. J. Sørdalen, Exponential stabilization of mobile robots with nonholonomic constraints. IEEE Trans. Automat. Control37 (1992) 1791-1797.
- M. Fliess, J. Lévine, P. Martin and P. Rouchon, Flatness and defect of non-linear systems: introductory theory and examples. Internat. J. Control61 (1995) 1327-1361.
- H. Hermes, Nilpotent and high-order approximations of vector field systems. SIAM Rev.33 (1991) 238-264.
- A. Isidori, Nonlinear control systems. Springer Verlag, third edition (1995).
- M. Kawski, Geometric homogeneity and stabilization, in IFAC Nonlinear Control Systems Design Symp. (NOLCOS) (1995) 164-169.
- I. Kolmanovsky and N.H. McClamroch, Developments in nonholonomic control problems. IEEE Control Systems (1995) 20-36.
- J. Kurzweil and J. Jarnik, Iterated lie brackets in limit processes in ordinary differential equations. Results in Mathematics14 (1988) 125-137.
- Z. Li and J.F. Canny, Nonholonomic motion planning. Kluwer Academic Press (1993).
- W. Liu, An approximation algorithm for nonholonomic systems. SIAM J. Contr. Opt.35 (1997) 1328-1365.
- D.A. Lizárraga, P. Morin and C. Samson, Non-robustness of continuous homogeneous stabilizers for affine systems. Technical Report 3508, INRIA (1998). Available at http://www.inria.fr/RRRT/RR-3508.html
- R.T. M'Closkey and R.M. Murray, Exponential stabilization of driftless nonlinear control systems using homogeneous feedback. IEEE Trans. Automat. Contr.42 (1997) 614-628.
- S. Monaco and D. Normand-Cyrot, An introduction to motion planning using multirate digital control, in IEEE Conf. on Decision and Control (CDC) (1991) 1780-1785.
- P. Morin, J.-B. Pomet and C. Samson, Design of homogeneous time-varying stabilizing control laws for driftless controllable systems via oscillatory approximation of lie brackets in closed-loop. SIAM J. Contr. Opt. (to appear).
- P. Morin, J.-B. Pomet and C. Samson, Developments in time-varying feedback stabilization of nonlinear systems, in IFAC Nonlinear Control Systems Design Symp. (NOLCOS) (1998) 587-594.
- P. Morin and C. Samson, Exponential stabilization of nonlinear driftless systems with robustness to unmodeled dynamics. Technical Report 3477, INRIA (1998).
- R.M. Murray and S.S. Sastry, Nonholonomic motion planning: Steering using sinusoids. IEEE Trans. Automat. Contr.38 (1993) 700-716.
- L. Rosier, Étude de quelques problèmes de stabilisation. PhD thesis, École Normale de Cachan (1993).
- C. Samson, Velocity and torque feedback control of a nonholonomic cart, in Int. Workshop in Adaptative and Nonlinear Control: Issues in Robotics. LNCIS, Vol. 162, Springer Verlag, 1991 (1990).
- O.J. Sørdalen and O. Egeland, Exponential stabilization of nonholonomic chained systems. IEEE Trans. Automat. Contr.40 (1995) 35-49.
- G. Stefani, Polynomial approximations to control systems and local controllability, in IEEE Conf. on Decision and Control (CDC) (1985) 33-38.
- G. Stefani, On the local controllability of scalar-input control systems, in Theory and Applications of Nonlinear Control Systems, Proc. of MTNS'84, C.I. Byrnes and A. Linsquist Eds., North-Holland (1986) 167-179.
- H.J. Sussmann and W. Liu, Limits of highly oscillatory controls ans approximation of general paths by admissible trajectories, in IEEE Conf. on Decision and Control (CDC) (1991) 437-442.
- H.J. Sussmann, Lie brackets and local controllability: a sufficient condition for scalar-input systems. SIAM J. Contr. Opt.21 (1983) 686-713.
- H.J. Sussmann, A general theorem on local controllability. SIAM J. Contr. Opt.25 (1987) 158-194.