Page 1 Next

Displaying 1 – 20 of 147

Showing per page

A 2D system approach to the design of a robust modified repetitive-control system with a dynamic output-feedback controller

Lan Zhou, Jinhua She, Shaowu Zhou (2014)

International Journal of Applied Mathematics and Computer Science

This paper is concerned with the problem of designing a robust modified repetitive-control system with a dynamic outputfeedback controller for a class of strictly proper plants. Employing the continuous lifting technique, a continuous-discrete two-dimensional (2D) model is built that accurately describes the features of repetitive control. The 2D control input contains the direct sum of the effects of control and learning, which allows us to adjust control and learning preferentially. The singular-value...

A separation principle for the stabilization of a class of time delay nonlinear systems

Amel Benabdallah (2015)

Kybernetika

In this paper, we establish a separation principle for a class of time-delay nonlinear systems satisfying some relaxed triangular-type condition. Under delay independent conditions, we propose a nonlinear time-delay observer to estimate the system states, a state feedback controller and we prove that the observer-based controller stabilizes the system.

An optimal sliding mode congestion controller for connection-oriented communication networks with lossy links

Andrzej Bartoszewicz, Piotr Leśniewski (2014)

International Journal of Applied Mathematics and Computer Science

A new discrete-time sliding-mode congestion controller for connection-oriented networks is proposed. Packet losses which may occur during the transmission process are explicitly taken into account. Two control laws are presented, each obtained by minimizing a different cost functional. The first one concentrates on the output variable, whereas in the second one the whole state vector is considered. Weighting factors for adjusting the influence of the control signal and appropriate (state or output)...

Approximation of fractional positive stable continuous-time linear systems by fractional positive stable discrete-time systems

Tadeusz Kaczorek (2013)

International Journal of Applied Mathematics and Computer Science

Fractional positive asymptotically stable continuous-time linear systems are approximated by fractional positive asymptotically stable discrete-time systems using a linear Padé-type approximation. It is shown that the approximation preserves the positivity and asymptotic stability of the systems. An optional system approximation is also discussed.

Argument increment stability criterion for linear delta models

Milan Hofreiter, Pavel Zítek (2003)

International Journal of Applied Mathematics and Computer Science

Currently used stability criteria for linear sampled-data systems refer to the standard linear difference equation form of the system model. This paper presents a stability criterion based on the argument increment rule modified for the delta operator form of the sampled-data model. For the asymptotic stability of this system form it is necessary and sufficient that the roots of the appropriate characteristic equation lie inside a circle in the left half of the complex plane, the radius of which...

Asymptotic stability of linear conservative systems when coupled with diffusive systems

Denis Matignon, Christophe Prieur (2005)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study linear conservative systems of finite dimension coupled with an infinite dimensional system of diffusive type. Computing the time-derivative of an appropriate energy functional along the solutions helps us to prove the well-posedness of the system and a stability property. But in order to prove asymptotic stability we need to apply a sufficient spectral condition. We also illustrate the sharpness of this condition by exhibiting some systems for which we do not have the asymptotic...

Asymptotic stability of linear conservative systems when coupled with diffusive systems

Denis Matignon, Christophe Prieur (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we study linear conservative systems of finite dimension coupled with an infinite dimensional system of diffusive type. Computing the time-derivative of an appropriate energy functional along the solutions helps us to prove the well-posedness of the system and a stability property. But in order to prove asymptotic stability we need to apply a sufficient spectral condition. We also illustrate the sharpness of this condition by exhibiting some systems for which we do not have the asymptotic property. ...

Asymptotic stability of wave equations with memory and frictional boundary dampings

Fatiha Alabau-Boussouira (2008)

Applicationes Mathematicae

This work is concerned with stabilization of a wave equation by a linear boundary term combining frictional and memory damping on part of the boundary. We prove that the energy decays to zero exponentially if the kernel decays exponentially at infinity. We consider a slightly different boundary condition than the one used by M. Aassila et al. [Calc. Var. 15, 2002]. This allows us to avoid the assumption that the part of the boundary where the feedback is active is strictly star-shaped. The result...

Bounded-input-bounded-state stabilization of switched processes and periodic asymptotic controllability

Andrea Bacciotti (2017)

Kybernetika

The main result of this paper is a sufficient condition for the existence of periodic switching signals which render asymptotically stable at the origin a linear switched process defined by a pair of 2 × 2 real matrices. The interest of this result is motivated by the application to the problem of bounded-input-bounded-state (with respect to an external input) stabilization of linear switched processes.

Currently displaying 1 – 20 of 147

Page 1 Next