# Semi-global C1 solution and exact boundary controllability for reducible quasilinear hyperbolic systems

Ta-Tsien Li; Bopeng Rao; Yi Jin

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

- Volume: 34, Issue: 2, page 399-408
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topLi, Ta-Tsien, Rao, Bopeng, and Jin, Yi. "Semi-global C1 solution and exact boundary controllability for reducible quasilinear hyperbolic systems." ESAIM: Mathematical Modelling and Numerical Analysis 34.2 (2010): 399-408. <http://eudml.org/doc/197397>.

@article{Li2010,

abstract = {
By means of a result on the semi-global C1 solution, we establish the
exact boundary controllability for the reducible quasilinear
hyperbolic system if the C1 norm of initial data and final state is
small enough.
},

author = {Li, Ta-Tsien, Rao, Bopeng, Jin, Yi},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {reducible quasilinear hyperbolic system;
semi-global C1 solution; exact boundary controllability.; hyperbolic systems; boundary control; exact controllability},

language = {eng},

month = {3},

number = {2},

pages = {399-408},

publisher = {EDP Sciences},

title = {Semi-global C1 solution and exact boundary controllability for reducible quasilinear hyperbolic systems},

url = {http://eudml.org/doc/197397},

volume = {34},

year = {2010},

}

TY - JOUR

AU - Li, Ta-Tsien

AU - Rao, Bopeng

AU - Jin, Yi

TI - Semi-global C1 solution and exact boundary controllability for reducible quasilinear hyperbolic systems

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2010/3//

PB - EDP Sciences

VL - 34

IS - 2

SP - 399

EP - 408

AB -
By means of a result on the semi-global C1 solution, we establish the
exact boundary controllability for the reducible quasilinear
hyperbolic system if the C1 norm of initial data and final state is
small enough.

LA - eng

KW - reducible quasilinear hyperbolic system;
semi-global C1 solution; exact boundary controllability.; hyperbolic systems; boundary control; exact controllability

UR - http://eudml.org/doc/197397

ER -

## References

top- M. Cirià, Boundary controllability of nonlinear hyperbolic systems. SIAM J. Control7 (1969) 198-212.
- M. Cirinà, Nonlinear hyperbolic problems with solutions on preassigned sets. Michigan Math. J.17 (1970) 193-209. Zbl0201.42702
- I. Lasiecka and R. Triggiani, Exact controllability of semilinear abstract systems with applications to waves and plates boundary control problems. Appl. Math. Optim.23 (1991) 109-154. Zbl0729.93023
- Li Ta-tsien, Global Classical Solutions for Quasilinear Hyperbolic Systems. Research in Applied Mathematics32, Masson, John Wiley (1994). Zbl0841.35064
- Li Ta-tsien and Zhang Bing-Yu, Global exact boundary controllability of a class of quasilinear hyperbolic systems. J. Math. Anal. Appl.225 (1998) 289-311. Zbl0915.93007
- Li Ta-tsien and Yu Wen-ci, Boundary Value Problems for Quasilinear Hyperbolic Systems. Duck University, Mathematics Series V (1985).
- J.-L. Lions, Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués, Masson (1988) Vol. I. Zbl0653.93002
- V. Komornik, Exact Controllability and Stabilization, The Multiplier Method, Masson, John Wiley (1994). Zbl0937.93003
- D.L. Russell, Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev.20 (1978) 639-739. Zbl0397.93001
- E. Zuazua, Exact controllability for the semilinear wave equation. J. Math. Pures Appl.69 (1990) 1-32. Zbl0638.49017

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.