Global boundary controllability of the de St. Venant equations between steady states
Annales de l'I.H.P. Analyse non linéaire (2003)
- Volume: 20, Issue: 1, page 1-11
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGugat, M., and Leugering, G.. "Global boundary controllability of the de St. Venant equations between steady states." Annales de l'I.H.P. Analyse non linéaire 20.1 (2003): 1-11. <http://eudml.org/doc/78572>.
@article{Gugat2003,
author = {Gugat, M., Leugering, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {controllability; nonlinear hyperbolic system; St. Venant equation; characteristic form; channel flow; boundary controls},
language = {eng},
number = {1},
pages = {1-11},
publisher = {Elsevier},
title = {Global boundary controllability of the de St. Venant equations between steady states},
url = {http://eudml.org/doc/78572},
volume = {20},
year = {2003},
}
TY - JOUR
AU - Gugat, M.
AU - Leugering, G.
TI - Global boundary controllability of the de St. Venant equations between steady states
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 1
SP - 1
EP - 11
LA - eng
KW - controllability; nonlinear hyperbolic system; St. Venant equation; characteristic form; channel flow; boundary controls
UR - http://eudml.org/doc/78572
ER -
References
top- [1] Bennighof J.K., Boucher R.L., Exact minimum-time control of a distributed system using a traveling wave formulation, J. Optim. Theory Appl.73 (1992) 149-167. Zbl0794.49004MR1152240
- [2] Cirina M., Boundary controllability of nonlinear hyperbolic systems, SIAM J. Control7 (1969) 198-212. Zbl0182.20203MR254408
- [3] Cirina M., Nonlinear hyperbolic problems with solutions on preassigned sets, Michigan Math. J.17 (1970) 193-209. Zbl0201.42702MR271546
- [4] Coron J.M., d'Andrea Novel B., Bastin G., A Lyapunov approach to control irrigation canals modeled by Saint-Venant equations, in: ECC Karlsruhe, 1999.
- [5] Cunge J.A., Holly F.M., Verwey A., Practical Aspects of Computational River Hydraulics, Pitman, London, 1980.
- [6] Dafermos C.M., Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin, 2000. Zbl0940.35002MR1763936
- [7] Gugat M., Leugering G., Schittkowski K., Schmidt E.J.P.G., Modelling, stabilization, and control of flow in networks of open channels, in: Grötschel M., Krumke S.O., Rambau J. (Eds.), Online Optimization of Large Scale Systems, Springer, Berlin, 2001, pp. 251-270. Zbl0987.93056MR1860632
- [8] Graf W.H., Fluvial Hydraulics, Wiley, Chichester, 1998.
- [9] Hartmann P., Wintner A., On hyperbolic partial differential equations, Amer. J. Math.74 (1952) 834-864. Zbl0048.33302MR51413
- [10] Leugering G., Schmidt E.J.P.G., On the modelling and stabilisation of flows in networks of open canals, SIAM J. Control and Optimization (2000), submitted. Zbl1024.76009
- [11] Li T.-T., Global Classical Solutions for Quasilinear Hyperbolic Systems, Masson, Paris, 1994. Zbl0841.35064MR1291392
- [12] Li T.-T., Rao B., Jin Y., Semi-global C1 solution and exact boundary controllabbility for reducible quasilinear hyperbolic systems, Math. Modell. Num. Anal.34 (2000) 399-408. Zbl1024.93027MR1765666
- [13] Li T.-T., Rao B., Jin Y., Solution C1 semi-globale et contrôlabilité exacte frontière de systèmes hyperboliques quasi linéaires réductibles, C. R. Acad. Sci. Paris, Série I330 (2000) 205-210. Zbl0952.93062MR1748309
- [14] de Saint-Venant B., Theorie du mouvement non-permanent des eaux avec application aux crues des rivières et à l‘introduction des marees dans leur lit, C. R. Acad. Sci. Paris73 (1871) 148-154, 237–240. Zbl03.0482.04JFM03.0482.04
- [15] Schmidt E.J.P.G., On the control of mechanical systems from one equilibrium location to another, J. Differential Equations175 (2001) 189-208. Zbl0997.70026MR1855969
- [16] E.J.P.G. Schmidt, On a non-linear wave equation and the control of an elastic string from one equilibrium location to another, J. Math. Anal. Appl., to appear. Zbl1013.35055MR1930857
Citations in EuDML Documents
top- M. Gugat, G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with friction
- Martin Gugat, Michaël Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks
- Martin Gugat, Michaël Herty, Existence of classical solutions and feedback stabilization for the flow in gas networks
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.