Global boundary controllability of the de St. Venant equations between steady states

M. Gugat; G. Leugering

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 1, page 1-11
  • ISSN: 0294-1449

How to cite

top

Gugat, M., and Leugering, G.. "Global boundary controllability of the de St. Venant equations between steady states." Annales de l'I.H.P. Analyse non linéaire 20.1 (2003): 1-11. <http://eudml.org/doc/78572>.

@article{Gugat2003,
author = {Gugat, M., Leugering, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {controllability; nonlinear hyperbolic system; St. Venant equation; characteristic form; channel flow; boundary controls},
language = {eng},
number = {1},
pages = {1-11},
publisher = {Elsevier},
title = {Global boundary controllability of the de St. Venant equations between steady states},
url = {http://eudml.org/doc/78572},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Gugat, M.
AU - Leugering, G.
TI - Global boundary controllability of the de St. Venant equations between steady states
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 1
SP - 1
EP - 11
LA - eng
KW - controllability; nonlinear hyperbolic system; St. Venant equation; characteristic form; channel flow; boundary controls
UR - http://eudml.org/doc/78572
ER -

References

top
  1. [1] Bennighof J.K., Boucher R.L., Exact minimum-time control of a distributed system using a traveling wave formulation, J. Optim. Theory Appl.73 (1992) 149-167. Zbl0794.49004MR1152240
  2. [2] Cirina M., Boundary controllability of nonlinear hyperbolic systems, SIAM J. Control7 (1969) 198-212. Zbl0182.20203MR254408
  3. [3] Cirina M., Nonlinear hyperbolic problems with solutions on preassigned sets, Michigan Math. J.17 (1970) 193-209. Zbl0201.42702MR271546
  4. [4] Coron J.M., d'Andrea Novel B., Bastin G., A Lyapunov approach to control irrigation canals modeled by Saint-Venant equations, in: ECC Karlsruhe, 1999. 
  5. [5] Cunge J.A., Holly F.M., Verwey A., Practical Aspects of Computational River Hydraulics, Pitman, London, 1980. 
  6. [6] Dafermos C.M., Hyperbolic Conservation Laws in Continuum Physics, Springer, Berlin, 2000. Zbl0940.35002MR1763936
  7. [7] Gugat M., Leugering G., Schittkowski K., Schmidt E.J.P.G., Modelling, stabilization, and control of flow in networks of open channels, in: Grötschel M., Krumke S.O., Rambau J. (Eds.), Online Optimization of Large Scale Systems, Springer, Berlin, 2001, pp. 251-270. Zbl0987.93056MR1860632
  8. [8] Graf W.H., Fluvial Hydraulics, Wiley, Chichester, 1998. 
  9. [9] Hartmann P., Wintner A., On hyperbolic partial differential equations, Amer. J. Math.74 (1952) 834-864. Zbl0048.33302MR51413
  10. [10] Leugering G., Schmidt E.J.P.G., On the modelling and stabilisation of flows in networks of open canals, SIAM J. Control and Optimization (2000), submitted. Zbl1024.76009
  11. [11] Li T.-T., Global Classical Solutions for Quasilinear Hyperbolic Systems, Masson, Paris, 1994. Zbl0841.35064MR1291392
  12. [12] Li T.-T., Rao B., Jin Y., Semi-global C1 solution and exact boundary controllabbility for reducible quasilinear hyperbolic systems, Math. Modell. Num. Anal.34 (2000) 399-408. Zbl1024.93027MR1765666
  13. [13] Li T.-T., Rao B., Jin Y., Solution C1 semi-globale et contrôlabilité exacte frontière de systèmes hyperboliques quasi linéaires réductibles, C. R. Acad. Sci. Paris, Série I330 (2000) 205-210. Zbl0952.93062MR1748309
  14. [14] de Saint-Venant B., Theorie du mouvement non-permanent des eaux avec application aux crues des rivières et à l‘introduction des marees dans leur lit, C. R. Acad. Sci. Paris73 (1871) 148-154, 237–240. Zbl03.0482.04JFM03.0482.04
  15. [15] Schmidt E.J.P.G., On the control of mechanical systems from one equilibrium location to another, J. Differential Equations175 (2001) 189-208. Zbl0997.70026MR1855969
  16. [16] E.J.P.G. Schmidt, On a non-linear wave equation and the control of an elastic string from one equilibrium location to another, J. Math. Anal. Appl., to appear. Zbl1013.35055MR1930857

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.