Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation*
Snorre H. Christiansen; Claire Scheid
ESAIM: Mathematical Modelling and Numerical Analysis (2011)
- Volume: 45, Issue: 4, page 739-760
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topChristiansen, Snorre H., and Scheid, Claire. "Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation*." ESAIM: Mathematical Modelling and Numerical Analysis 45.4 (2011): 739-760. <http://eudml.org/doc/197412>.
@article{Christiansen2011,
abstract = {
As an example of a simple constrained geometric non-linear wave equation, we study a numerical approximation of the Maxwell Klein Gordon equation. We consider an existing constraint preserving semi-discrete scheme based on finite elements and prove its convergence in space dimension 2 for initial data of finite energy.
},
author = {Christiansen, Snorre H., Scheid, Claire},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Waves; Maxwell Klein Gordon; non-linear constraints; finite elements; convergence analysis; geometric wave equation, Maxwell-Klein-Gordon equation},
language = {eng},
month = {2},
number = {4},
pages = {739-760},
publisher = {EDP Sciences},
title = {Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation*},
url = {http://eudml.org/doc/197412},
volume = {45},
year = {2011},
}
TY - JOUR
AU - Christiansen, Snorre H.
AU - Scheid, Claire
TI - Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation*
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2011/2//
PB - EDP Sciences
VL - 45
IS - 4
SP - 739
EP - 760
AB -
As an example of a simple constrained geometric non-linear wave equation, we study a numerical approximation of the Maxwell Klein Gordon equation. We consider an existing constraint preserving semi-discrete scheme based on finite elements and prove its convergence in space dimension 2 for initial data of finite energy.
LA - eng
KW - Waves; Maxwell Klein Gordon; non-linear constraints; finite elements; convergence analysis; geometric wave equation, Maxwell-Klein-Gordon equation
UR - http://eudml.org/doc/197412
ER -
References
top- R.A Adams and J.J.F. Fournier, Sobolev Spaces – Pure and Applied Mathematics Series. Second edition, Elsevier (2003).
- D.N. Arnold, R.S. Falk and R. Winther, Finite element exterior calculus, homological techniques, and applications. Acta Numer.15 (2006) 1–155.
- S. Bartels, X. Fenga and A. Prohl, Finite element approximations of wave maps into spheres. SIAM J. Numer. Anal.46 (2007) 61–87.
- A. Bossavit, Mixed finite elements and the complex of Whitney forms, in The mathematics of finite elements and applicationsVI, J. Whiteman Ed., Academic Press, London (1988) 137–144.
- J.H. Bramble, J.E. Pasciak and O. Steinbach, On the stability of the L2 projection in H1(Ω). Math. Comput.71 (2001) 147–156.
- S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods. Second edition, Springer (2002).
- S.H. Christiansen, Résolution des équations intégrales pour la diffraction d'ondes accoustiques et électromagnétiques. Ph.D. thesis, École polytechnique, France (2002).
- S.H. Christiansen, Discrete Fredholm properties and convergence estimates for the Electric Field Integral Equation. Math. Comput.73 (2004) 143–167.
- S.H. Christiansen, Constraint preserving schemes for gauge invariant wave equations. SIAM J. Sci. Comput.31 (2009) 1448–1469.
- S.H. Christiansen and R. Winther, On constraint preservation in numerical simulations of Yang-Mills equations. SIAM J. Sci. Comput.28 (2006) 75–101.
- S.H. Christiansen and R. Winther, Smoothed projections in finite element exterior calculus. Math. Comput.77 (2007) 813–829.
- P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of numerical analysisII, P.G. Ciarlet and J.-L. Lions Eds., North Holland (1991) 17–351.
- M. Crouzeix and V. Thomée, The stability in Lp and W1p of the L2-projection onto finite element function spaces. Math. Comput.48 (1987) 521–532.
- J. Douglas Jr., T. Dupont and L. Wahlbin, The stability in Lq of the L2-projection into finite element function spaces. Numer. Math.23 (1975) 193–197.
- F. Dubois, Discrete vector potential representation of a divergence free vector field in three-dimensional domains: Numerical analysis of a model problem. SIAM J. Numer. Anal.27 (1990) 1103–1141.
- J. Ginibre and G. Velo, The Cauchy problem for coupled Yang-Mills and scalar fields in the temporal gauge. Commun. Math. Phys.82 (1981) 1–28.
- V. Girault and P.-A. Raviart, Finite Element approximation of the Navier-Stokes equations. Springer-Verlag, Berlin (1986).
- F. Kikuchi, On a discrete compactness property for the Nédélec finite elements. J. Fac. Sci. Univ. Tokyo, Sect. 1A Math.36 (1989) 479–490.
- S. Klainerman, Mathematical challenges of general relativity. Rend. Mat. Appl.27 (2007) 105–122.
- S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy. Duke Math. J.74 (1994) 19–44.
- S. Klainerman and M. Machedon, Finite energy solutions of the Yang-Mills equations in R3+1. Ann. Math.142 (1995) 39–119.
- E.H. Lieb and M. Loss, Analysis Graduate Studies in Mathematics14. Second edition, AMS (2001).
- J.L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications1. Dunod, Paris (1968).
- N. Masmoudi and K. Nakanishi, Uniqueness of Finite Energy solutions for Maxwell-Dirac and Maxwell-Klein-Gordon equations. Commun. Math. Phys.243 (2003) 123–136.
- P. Monk, Finite Element Methods for Maxwell's Equations. Oxford Science Publication (2003).
- J. Schöberl, A posteriori error estimates for Maxwell equations. Math. Comput.77 (2008) 633–649.
- S. Selberg and A. Tesfahun, Finite-energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge. Commun. Partial Differ. Equ.35 (2010) 1029–1057.
- J. Shatah and M. Struwe, Geometric wave equations, Courant Lecture Notes in Mathematics2. New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence (1998).
- C.G. Simader, On Dirichlet Boundary Value Problem. Springer-Verlag (1972).
- J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura. Appl.146 (1987) 65–96.
- T. Tao, Local well-posedness of the Yang-Mills equation in the temporal gauge below the energy norm. J. Differ. Equ.189 (2003) 366–382.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.