Displaying similar documents to “Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation*”

Convergence of a constrained finite element discretization of the Maxwell Klein Gordon equation

Snorre H. Christiansen, Claire Scheid (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

As an example of a simple constrained geometric non-linear wave equation, we study a numerical approximation of the Maxwell Klein Gordon equation. We consider an existing constraint preserving semi-discrete scheme based on finite elements and prove its convergence in space dimension 2 for initial data of finite energy.

Numerical simulations of the focal spot generated by a set of laser beams : LMJ

Antoine Bourgeade, Boniface Nkonga (2011)

ESAIM: Proceedings

Similarity:

In order to get the fusion of small capsules containing a deuterium-tritium nuclear fuel, the MegaJoule laser (LMJ) will focus a large number of laser beams inside a cylinder (Hohlraum) which contains the fusion capsule. In order to control this process we have to know as well as possible the electromagnetic field created by the laser beams on both Hohlraum’s apertures. This article describes a numerical tool which computes this electromagnetic...

Influence of waves on Lagrangian acceleration in two-dimensional turbulent flows

Romain Nguyen van yen, Benjamin Kadoch, Vivek Kumar, Benjamin Ménétrier, Marie Farge, Kai Schneider, Diane Douady, Lionel Guez (2011)

ESAIM: Proceedings

Similarity:

The Lagrangian statistics in rotating Saint-Venant turbulence are studied by means of direct numerical simulation using a pseudo-spectral discretization fully resolving, both in time and space, all the inertio-gravity waves present in the system. To understand the influence of waves, three initial conditions are considered, one which is dominated by waves, one which is dominated by vortices, and one which is intermediate between these two ...

Integration of the EPDiff equation by particle methods

Alina Chertock, Philip Du Toit, Jerrold Eldon Marsden (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

The purpose of this paper is to apply particle methods to the numerical solution of the EPDiff equation. The weak solutions of EPDiff are contact discontinuities that carry momentum so that wavefront interactions represent collisions in which momentum is exchanged. This behavior allows for the description of many rich physical applications, but also introduces difficult numerical challenges. We present a particle method for the EPDiff...

High-order WENO scheme for polymerization-type equations

Pierre Gabriel, Léon Matar Tine (2010)

ESAIM: Proceedings

Similarity:

Polymerization of proteins is a biochemical process involved in different diseases. Mathematically, it is generally modeled by aggregation-fragmentation-type equations. In this paper we consider a general polymerization model and propose a high-order numerical scheme to investigate the behavior of the solution. An important property of the equation is the mass conservation. The WENO scheme is built to preserve the total mass of proteins ...