An analysis technique for stabilized finite element solution of incompressible flows

Tomás Chacón Rebollo

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 35, Issue: 1, page 57-89
  • ISSN: 0764-583X

Abstract

top
This paper presents an extension to stabilized methods of the standard technique for the numerical analysis of mixed methods. We prove that the stability of stabilized methods follows from an underlying discrete inf-sup condition, plus a uniform separation property between bubble and velocity finite element spaces. We apply the technique introduced to prove the sta bi li ty of stabilized spectral element methods so as stabilized solution of the primitive equations of the ocean.

How to cite

top

Rebollo, Tomás Chacón. "An analysis technique for stabilized finite element solution of incompressible flows." ESAIM: Mathematical Modelling and Numerical Analysis 35.1 (2010): 57-89. <http://eudml.org/doc/197444>.

@article{Rebollo2010,
abstract = { This paper presents an extension to stabilized methods of the standard technique for the numerical analysis of mixed methods. We prove that the stability of stabilized methods follows from an underlying discrete inf-sup condition, plus a uniform separation property between bubble and velocity finite element spaces. We apply the technique introduced to prove the sta bi li ty of stabilized spectral element methods so as stabilized solution of the primitive equations of the ocean. },
author = {Rebollo, Tomás Chacón},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Oseen equations; finite elements; mixed methods; stabilized methods; discrete inf-sup condition; spectral methods; primitive equations.; stabilized finite element solution; stability; uniform separation property; finite element spaces; primitive equations of ocean},
language = {eng},
month = {3},
number = {1},
pages = {57-89},
publisher = {EDP Sciences},
title = {An analysis technique for stabilized finite element solution of incompressible flows},
url = {http://eudml.org/doc/197444},
volume = {35},
year = {2010},
}

TY - JOUR
AU - Rebollo, Tomás Chacón
TI - An analysis technique for stabilized finite element solution of incompressible flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 35
IS - 1
SP - 57
EP - 89
AB - This paper presents an extension to stabilized methods of the standard technique for the numerical analysis of mixed methods. We prove that the stability of stabilized methods follows from an underlying discrete inf-sup condition, plus a uniform separation property between bubble and velocity finite element spaces. We apply the technique introduced to prove the sta bi li ty of stabilized spectral element methods so as stabilized solution of the primitive equations of the ocean.
LA - eng
KW - Oseen equations; finite elements; mixed methods; stabilized methods; discrete inf-sup condition; spectral methods; primitive equations.; stabilized finite element solution; stability; uniform separation property; finite element spaces; primitive equations of ocean
UR - http://eudml.org/doc/197444
ER -

References

top
  1. C. Amrouche and V. Girault, Decomposition of Vector spaces and application to the Stokes problem in arbitrary dimensions. Czeschoslovak Math. J.44 (1994) 109-140.  Zbl0823.35140
  2. O. Besson and M. R. Laydi, Some estimates for the anisotropic Navier- Stokes equations and for the hydrostatic approximation. RAIRO-Modél. Math. Anal. Numér.26 (1992) 855-865.  Zbl0765.76017
  3. I. Babuška, The Finite Element Method with Lagrange multipliers. Numer. Math.20 (1973) 179-192.  Zbl0258.65108
  4. C. Baiocchi, F. Brezzi and L. P. Franca, Virtual Bubbles and Galerkin-least-squares type methods (Ga.L.S.). Comput. Methods Appl. Mech. Engrg.105 (1993) 125-141.  Zbl0772.76033
  5. C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques. Springer-Verlag, Berlin (1992).  
  6. H. Brézis, Analyse Fonctionnelle. Masson, Paris (1983).  
  7. F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange Multipliers. RAIRO-Anal. Numér.R2 (1974) 129-151.  Zbl0338.90047
  8. F. Brezzi and J. Douglas, Stabilized mixed methods for the Stokes problem. Numer. Math.53 (1988) 225-236.  Zbl0669.76052
  9. F. Brezzi and J. Pitkäranta, On the stabilization of Finite Element approximations of the Stokes problem, in Efficient Solutions for Elliptic Systems. Notes on Numerical Fluid Mechanics10, W. Hackbusch Ed., Springer-Verlag, Berlin (1984) 11-19.  
  10. T. Chacón Rebollo, A term by term Stabilization Algorithm for Finite Element solution of incompressible flow problems. Numer. Math.79 (1998) 283-319.  Zbl0910.76033
  11. T. Chacón Rebollo and A. Domínguez Delgado, A unified analysis of Mixed and Stabilized Finite Element Solutions of Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg.182 (2000) 301-331.  
  12. T. Chacón Rebollo and F. Guillén González, An intrinsic analysis of existence of solutions for the hydrostatic approximation of Navier-Stokes equations. C. R. Acad. Sci. Paris, Série I 330 (2000) 841-846.  Zbl0959.35134
  13. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978).  Zbl0383.65058
  14. L.P. Franca and S.L. Frey, Stabilized Finite Elements: II. The incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg.99 (1992) 209-233.  Zbl0765.76048
  15. L.P. Franca and R. Stenberg, Error analysis fo some Galerkin-Least-Squares methods for the elasticity equations. SIAM J. Numer. Anal.28 (1991) 1680-1697.  Zbl0759.73055
  16. L.P. Franca, T.J.R. Hughes and R. Stenberg, Stabilized Finite Element Methods, in Incompressible Computational Fluid Dynamics, M.D. Gunzburger and R.A. Nicolaides Eds., Cambridge Univ. Press, New York (1993).  Zbl1189.76339
  17. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes equations. Springer-Verlag, Berlin (1988).  Zbl0396.65070
  18. R. Dautray and L.L. Lions, Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques. Masson, Paris (2000).  Zbl0642.35001
  19. P. Gervasio and F. Saleri, Stabilized Spectral Element approximation for the Navier-Stokes equations. Numer. Methods Partial Differential Eq.14 (1988) 115-141.  Zbl0899.76295
  20. T.J.R. Hughes and L.P. Franca, A new Finite Element formulation for CFD: VII. The Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces. Comput. Methods Appl. Mech. Engrg.65 (1987) 85-96.  Zbl0635.76067
  21. T.J.R. Hughes, L.P. Franca and M. Balestra, A new Finite Element formulation for CFD: V. Circumventing the Brezzi-Babuška condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Comput. Methods Appl Mech. Engrg.59 (1986) 85-99.  Zbl0622.76077
  22. P. Knobloch and L. Tobiska, Stabilization methods of Bubble type for the Q1-Q1-Element applied to the incompressible Navier-Stokes equations. ESAIM: M2AN34 (2000) 85-107.  Zbl0984.76047
  23. R. Lewandowski, Analyse Mathématique et Océanographie. Masson, Paris (1997).  
  24. J.L. Lions, R. Temam and S. Wang, New formulation of the primitive equations of the atmosphere and applications. Nonlinearity5 (1992) 237-288.  Zbl0746.76019
  25. R. Pierre, Simple C0-approximations for the computation of incompressible flows. Comput. Methods Appl Mech. Engrg.68 (1989) 205-228.  
  26. G. Russo, Bubble stabilization of Finite Element Methods fo the linearized incompressible Navier-Stokes equations. Comput. Methods Appl Mech. Engrg.132 (1996) 335-343.  Zbl0887.76038
  27. L. Tobishka and R. Verfürth, Analysis of a Streamline Diffusion finite element method for the Stokes and Navier-Stokes equations. SIAM J. Numer. Anal.33 (1996) 107-127.  Zbl0843.76052
  28. R. Verfürth, Analysis of some Finite Element solutions for the Stokes Problem. RAIRO-Anal. Numér.18 (1984) 175-182.  Zbl0557.76037

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.