Error estimates for a mixed finite element approximation of the Stokes equations
- Volume: 18, Issue: 2, page 175-182
- ISSN: 0764-583X
Access Full Article
topHow to cite
topVerfürth, R.. "Error estimates for a mixed finite element approximation of the Stokes equations." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 18.2 (1984): 175-182. <http://eudml.org/doc/193431>.
@article{Verfürth1984,
author = {Verfürth, R.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {mixed finite element method; polygonal domain; discrete inf-sup condition; abstract error analysis},
language = {eng},
number = {2},
pages = {175-182},
publisher = {Dunod},
title = {Error estimates for a mixed finite element approximation of the Stokes equations},
url = {http://eudml.org/doc/193431},
volume = {18},
year = {1984},
}
TY - JOUR
AU - Verfürth, R.
TI - Error estimates for a mixed finite element approximation of the Stokes equations
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1984
PB - Dunod
VL - 18
IS - 2
SP - 175
EP - 182
LA - eng
KW - mixed finite element method; polygonal domain; discrete inf-sup condition; abstract error analysis
UR - http://eudml.org/doc/193431
ER -
References
top- 1 I BABUSKA, The finite element method with Lagrangian multipliers, Numer Math 20, pp 179-192, 1973 Zbl0258.65108MR359352
- 2 M BERCOVIER, O PIRONNEAU, Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer Math 33, pp 211-224, 1979 Zbl0423.65058MR549450
- 3 C BERNARDI, G RAUGEL, Méthodes d'éléments finis mixtes pour les équations de Stokes et de Navier-Stokes dans un polygone non convexe, Calcolo 18, pp 255-291, 1981 Zbl0475.76035MR647827
- 4 F BREZZI, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers, RAIRO Anal Numér 8 (R-2), pp 129-151, 1974 Zbl0338.90047MR365287
- 5 Ph G CIARLET, The finite element method for elliptic problems, North Holland Publishing Company, 1978 Zbl0383.65058MR520174
- 6 Ph CLÉMENT, Approximation by finite element functions using local regulanzation, RAIRO Anal Numér 9 (R-2), pp 77-84, 1975 Zbl0368.65008MR400739
- 7 M CROUZIEUX, P -A RAVIART, Conforming and nonconforming fimte element methods for solving the stationary Stokes equations, RAIRO Anal Numér 7 (R-3), pp 33-76, 1973 Zbl0302.65087MR343661
- 8 V GIRAULT, P -A RAVIART, An analysis of a mixed finite element method for the Navier-Stokes équations, Numer Math 33, pp 235-271, 1979 Zbl0396.65070MR553589
- 9 V GIRAULT, P -A RAVIART, Finite element approximation of the Navier-Stokes equations, Springer Verlag, 1979 Zbl0413.65081MR548867
- 10 R GLOWINSKI, O PIRONNEAU, On a mixed finite element approximation of the Stokes problem I Convergence of the approximate solutions, Numer Math 33, pp 397-424, 1979 Zbl0423.65059MR553350
- 11 R B KELLOGG, J E OSBORN, A regularity resuit for the Stokes problem in a convex polygon, J Funct Anal 21, pp 397-431, 1976 Zbl0317.35037MR404849
- 12 O LADYZHENSKAYA, The mathematical theory of viscous incompressible flows, Gordon & Breach, 1963 Zbl0121.42701MR155093
- 13 R TEMAM, Navier-Stokes equations, North Holland Publishing Company, 1977 Zbl0426.35003MR603444
Citations in EuDML Documents
top- P. Peisker, On the numerical solution of the first biharmonic equation
- Petr Knobloch, Lutz Tobiska, Stabilization methods of bubble type for the -element applied to the incompressible Navier-Stokes equations
- Jean Luc Guermond, Peter D. Minev, Mixed finite element approximation of an MHD problem involving conducting and insulating regions : the 2D case
- Richard S. Falk, A Fortin operator for two-dimensional Taylor-Hood elements
- Jean Luc Guermond, Peter D. Minev, Mixed Finite Element approximation of an MHD problem involving conducting and insulating regions: the 2D case
- Petr Knobloch, Lutz Tobiska, Stabilization methods of bubble type for the -element applied to the incompressible Navier-Stokes equations
- Aihui Zhou, Multi-parameter asymptotic error resolution of the mixed finite element method for the Stokes problem
- Christine Bernardi, Frédéric Hecht, More pressure in the finite element discretization of the Stokes problem
- O. Goubet, Separation of variables in the Stokes problem application to its finite element multiscale approximation
- R. Verfürth, Finite element approximation of steady Navier-Stokes equations with mixed boundary conditions
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.