Fast Singular Oscillating Limits and Global Regularity for the 3D Primitive Equations of Geophysics
Anatoli Babin; Alex Mahalov; Basil Nicolaenko
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 34, Issue: 2, page 201-222
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBabin, Anatoli, Mahalov, Alex, and Nicolaenko, Basil. "Fast Singular Oscillating Limits and Global Regularity for the 3D Primitive Equations of Geophysics." ESAIM: Mathematical Modelling and Numerical Analysis 34.2 (2010): 201-222. <http://eudml.org/doc/197472>.
@article{Babin2010,
abstract = {
Fast singular oscillating limits of
the three-dimensional "primitive" equations of
geophysical fluid flows are analyzed.
We prove existence on infinite time intervals
of regular solutions to the
3D "primitive" Navier-Stokes equations for strong
stratification (large stratification parameter N).
This uniform existence is proven for
periodic or stress-free boundary conditions
for all domain aspect ratios,
including the case of three wave resonances
which yield nonlinear "$2\frac\{1\}\{2\}$ dimensional"
limit equations for N → +∞;
smoothness assumptions are the same as for local
existence theorems, that is initial data in Hα, α ≥ 3/4.
The global existence is proven using techniques of
the Littlewood-Paley dyadic decomposition.
Infinite time regularity for solutions of the
3D "primitive" Navier-Stokes equations is obtained by bootstrapping
from global regularity of the limit resonant
equations and convergence theorems.
},
author = {Babin, Anatoli, Mahalov, Alex, Nicolaenko, Basil},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Fast singular oscillating limits; three-dimensional Navier-Stokes equations;
primitive equations for geophysical fluid flows.; three-dimensional primitive equations; primitive Navier-Stokes equations; infinite time regularity; fast singular oscillating limits; geophysical flows; infinite time intervals; regular solutions; strong stratification; global existence; Littlewood-Paley dyadic decomposition; limit resonance equations; convergence},
language = {eng},
month = {3},
number = {2},
pages = {201-222},
publisher = {EDP Sciences},
title = {Fast Singular Oscillating Limits and Global Regularity for the 3D Primitive Equations of Geophysics},
url = {http://eudml.org/doc/197472},
volume = {34},
year = {2010},
}
TY - JOUR
AU - Babin, Anatoli
AU - Mahalov, Alex
AU - Nicolaenko, Basil
TI - Fast Singular Oscillating Limits and Global Regularity for the 3D Primitive Equations of Geophysics
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 2
SP - 201
EP - 222
AB -
Fast singular oscillating limits of
the three-dimensional "primitive" equations of
geophysical fluid flows are analyzed.
We prove existence on infinite time intervals
of regular solutions to the
3D "primitive" Navier-Stokes equations for strong
stratification (large stratification parameter N).
This uniform existence is proven for
periodic or stress-free boundary conditions
for all domain aspect ratios,
including the case of three wave resonances
which yield nonlinear "$2\frac{1}{2}$ dimensional"
limit equations for N → +∞;
smoothness assumptions are the same as for local
existence theorems, that is initial data in Hα, α ≥ 3/4.
The global existence is proven using techniques of
the Littlewood-Paley dyadic decomposition.
Infinite time regularity for solutions of the
3D "primitive" Navier-Stokes equations is obtained by bootstrapping
from global regularity of the limit resonant
equations and convergence theorems.
LA - eng
KW - Fast singular oscillating limits; three-dimensional Navier-Stokes equations;
primitive equations for geophysical fluid flows.; three-dimensional primitive equations; primitive Navier-Stokes equations; infinite time regularity; fast singular oscillating limits; geophysical flows; infinite time intervals; regular solutions; strong stratification; global existence; Littlewood-Paley dyadic decomposition; limit resonance equations; convergence
UR - http://eudml.org/doc/197472
ER -
References
top- V.I. Arnold, Small denominators. I. Mappings of the circumference onto itself. Amer. Math. Soc. Transl. Ser. 2.46 (1965) 213-284.
- V.I. Arnold and B.A. Khesin, Topological Methods in Hydrodynamics. Appl. Math. Sci.125 (1997).
- J. Avrin, A. Babin, A. Mahalov and B. Nicolaenko, On regularity of solutions of 3D Navier-Stokes equations. Appl. Anal.71 (1999) 197-214.
- A. Babin, A. Mahalov and B. Nicolaenko, Long-time averaged Euler and Navier-Stokes equations for rotating fluids, In Structure and Dynamics of Nonlinear Waves in Fluids, 1994 IUTAM Conference, K. Kirchgässner and A. Mielke Eds, World Scientific (1995) 145-157.
- A. Babin, A. Mahalov and B. Nicolaenko, Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating fluids. Europ. J. Mech. B/Fluids15, No. 3, (1996) 291-300.
- A. Babin, A. Mahalov and B. Nicolaenko, Resonances and regularity for Boussinesq equations. Russian J. Math. Phys.4, No. 4, (1996) 417-428.
- A. Babin, A. Mahalov and B. Nicolaenko, Regularity and integrability of rotating shallow-water equations. Proc. Acad. Sci. Paris Ser. 1324 (1997) 593-598.
- A. Babin, A. Mahalov and B. Nicolaenko, Global regularity and integrability of 3D Euler and Navier-Stokes equations for uniformly rotating fluids. Asympt. Anal.15 (1997) 103-150.
- A. Babin, A. Mahalov and B. Nicolaenko, Global splitting and regularity of rotating shallow-water equations. Eur. J. Mech., B/Fluids16, No. 1, (1997) 725-754.
- A. Babin, A. Mahalov and B. Nicolaenko, On the nonlinear baroclinic waves and adjustment of pancake dynamics. Theor. and Comp. Fluid Dynamics11 (1998) 215-235.
- A. Babin, A. Mahalov, B. Nicolaenko and Y. Zhou, On the asymptotic regimes and the strongly stratified limit of rotating Boussinesq equations. Theor. and Comp. Fluid Dyn.9 (1997) 223-251.
- A. Babin, A. Mahalov and B. Nicolaenko, On the regularity of three-dimensional rotating Euler-Boussinesq equations. Math. Models Methods Appl. Sci., 9, No. 7 (1999) 1089-1121.
- A. Babin, A. Mahalov and B. Nicolaenko, Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Lett. Appl. Math. (to appear).
- A. Babin, A. Mahalov and B. Nicolaenko, Global Regularity of 3D Rotating Navier-Stokes Equations for Resonant Domains. Indiana University Mathematics Journal48, No. 3, (1999) 1133-1176.
- A. Babin, A. Mahalov and B. Nicolaenko, Fast singular oscillating limits of stably stratified three-dimensional Euler-Boussinesq equations and ageostrophic wave fronts, to appear in Mathematics of Atmosphere and Ocean Dynamics, Cambridge University Press (1999).
- A.V. Babin and M.I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam (1992).
- C. Bardos and S. Benachour, Domaine d'analycité des solutions de l'équation d'Euler dans un ouvert de . Annali della Scuola Normale Superiore di Pisa4 (1977) 647-687.
- P. Bartello, Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atm. Sci.52, No. 24, (1995) 4410-4428.
- A.J. Bourgeois and J.T. Beale, Validity of the quasigeostrophic model for large-scale flow in the atmosphere and the ocean, SIAM J. Math. Anal.25, No. 4, (1994) 1023-1068.
- L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math.35 (1982) 771-831.
- J.-Y. Chemin, A propos d'un probleme de pénalisation de type antisymétrique. Proc. Paris Acad. Sci.321 (1995) 861-864.
- P. Constantin, The Littlewood-Paley spectrum in two-dimensional turbulence, Theor. and Comp. Fluid Dyn.9, No. 3/4, (1997) 183-191.
- P. Constantin and C. Foias, Navier-Stokes Equations, The University of Chicago Press (1988).
- A. Craya, Contribution à l'analyse de la turbulence associée à des vitesses moyennes. P.S.T. Ministère de l'Air345 (1958).
- P.G. Drazin and W.H. Reid, Hydrodynamic Stability, Cambridge University Press (1981).
- P.F. Embid and A.J. Majda, Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity, Comm. Partial Diff. Eqs.21 (1996) 619-658.
- I. Gallagher, Un résultat de stabilité pour les équations des fluides tournants, C.R. Acad. Sci. Paris, Série I (1997) 183-186.
- I. Gallagher, Asymptotics of the solutions of hyperbolic equations with a skew-symmetric perturbation. J. Differential Equations150 (1998) 363-384.
- I. Gallagher, Applications of Schochet's methods to parabolic equations. J. Math. Pures Appl.77 (1998) 989-1054.
- E. Grenier, Rotating fluids and inertial waves. Proc. Acad Sci. Paris Ser. 1321 (1995) 711-714.
- J.L. Joly, G. Métivier and J. Rauch, Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves. Duke Math. J.70 (1993) 373-404.
- J.L. Joly, G. Métivier and J. Rauch, Resonant one-dimensional nonlinear geometric optics. J. Funct. Anal.114 (1993) 106-231.
- J.L. Joly, G. Métivier and J. Rauch, Coherent nonlinear waves and the Wiener algebra. Ann. Inst. Fourier44 (1994) 167-196.
- J.L. Joly, G. Métivier and J. Rauch, Coherent and focusing multidimensional nonlinear geometric optics. Ann. Scient. E. N. S. Paris 4 (1995) 28, 51-113.
- D.A. Jones, A. Mahalov and B. Nicolaenko, A numerical study of an operator splitting method for rotating flows with large ageostrophic initial data. Theor. and Comp. Fluid Dyn.13, No. 2, (1998) 143-159.
- O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd edition, Gordon and Breach, New York (1969).
- J.-L. Lions, R. Temam and S. Wang, Geostrophic asymptotics of the primitive equations of the atmosphere. Topological Methods in Nonlinear Analysis4 (1994) 253-287, special issue dedicated to J. Leray.
- J.-L. Lions, R. Temam and S. Wang, A simple global model for the general circulation of the atmosphere. Comm. Pure Appl. Math.50 (1997) 707-752.
- A. Mahalov, S. Leibovich and E.S. Titi, Invariant helical subspaces for the Navier-Stokes Equations. Arch. for Rational Mech. and Anal.112, No. 3, (1990) 193-222.
- A. Mahalov and P.S. Marcus, Long-time averaged rotating shallow-water equations, Proc. of the First Asian Computational Fluid Dynamics Conference, W.H. Hui, Y.-K. Kwok and J.R. Chasnov Eds, vol. 3, Hong Kong University of Science and Technology (1995) 1227-1230.
- O. Métais and J.R. Herring, Numerical experiments of freely evolving turbulence in stably stratified fluids. J. Fluid Mech.202 (1989) 117.
- J. Pedlosky, Geophysical Fluid Dynamics, 2nd edition, Springer-Verlag (1987).
- H. Poincaré, Sur la précession des corps déformables. Bull. Astronomique27 (1910) 321.
- G. Raugel and G. Sell, Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc.6, No. 3, (1993) 503-568.
- S. Schochet, Fast singular limits of hyperbolic PDE's. J. Differential Equations114 (1994) 476-512.
- E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press (1970).
- S.L. Sobolev, Ob odnoi novoi zadache matematicheskoi fiziki. Izvestiia Akademii Nauk SSSR, Ser. Matematicheskaia. 18, No. 1, (1954) 3-50.
- R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam (1984).
- R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia (1983).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.