Fast Singular Oscillating Limits and Global Regularity for the 3D Primitive Equations of Geophysics

Anatoli Babin; Alex Mahalov; Basil Nicolaenko

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 34, Issue: 2, page 201-222
  • ISSN: 0764-583X

Abstract

top
Fast singular oscillating limits of the three-dimensional "primitive" equations of geophysical fluid flows are analyzed. We prove existence on infinite time intervals of regular solutions to the 3D "primitive" Navier-Stokes equations for strong stratification (large stratification parameter N). This uniform existence is proven for periodic or stress-free boundary conditions for all domain aspect ratios, including the case of three wave resonances which yield nonlinear " 2 1 2 dimensional" limit equations for N → +∞; smoothness assumptions are the same as for local existence theorems, that is initial data in Hα, α ≥ 3/4. The global existence is proven using techniques of the Littlewood-Paley dyadic decomposition. Infinite time regularity for solutions of the 3D "primitive" Navier-Stokes equations is obtained by bootstrapping from global regularity of the limit resonant equations and convergence theorems.

How to cite

top

Babin, Anatoli, Mahalov, Alex, and Nicolaenko, Basil. "Fast Singular Oscillating Limits and Global Regularity for the 3D Primitive Equations of Geophysics." ESAIM: Mathematical Modelling and Numerical Analysis 34.2 (2010): 201-222. <http://eudml.org/doc/197472>.

@article{Babin2010,
abstract = { Fast singular oscillating limits of the three-dimensional "primitive" equations of geophysical fluid flows are analyzed. We prove existence on infinite time intervals of regular solutions to the 3D "primitive" Navier-Stokes equations for strong stratification (large stratification parameter N). This uniform existence is proven for periodic or stress-free boundary conditions for all domain aspect ratios, including the case of three wave resonances which yield nonlinear "$2\frac\{1\}\{2\}$ dimensional" limit equations for N → +∞; smoothness assumptions are the same as for local existence theorems, that is initial data in Hα, α ≥ 3/4. The global existence is proven using techniques of the Littlewood-Paley dyadic decomposition. Infinite time regularity for solutions of the 3D "primitive" Navier-Stokes equations is obtained by bootstrapping from global regularity of the limit resonant equations and convergence theorems. },
author = {Babin, Anatoli, Mahalov, Alex, Nicolaenko, Basil},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Fast singular oscillating limits; three-dimensional Navier-Stokes equations; primitive equations for geophysical fluid flows.; three-dimensional primitive equations; primitive Navier-Stokes equations; infinite time regularity; fast singular oscillating limits; geophysical flows; infinite time intervals; regular solutions; strong stratification; global existence; Littlewood-Paley dyadic decomposition; limit resonance equations; convergence},
language = {eng},
month = {3},
number = {2},
pages = {201-222},
publisher = {EDP Sciences},
title = {Fast Singular Oscillating Limits and Global Regularity for the 3D Primitive Equations of Geophysics},
url = {http://eudml.org/doc/197472},
volume = {34},
year = {2010},
}

TY - JOUR
AU - Babin, Anatoli
AU - Mahalov, Alex
AU - Nicolaenko, Basil
TI - Fast Singular Oscillating Limits and Global Regularity for the 3D Primitive Equations of Geophysics
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 2
SP - 201
EP - 222
AB - Fast singular oscillating limits of the three-dimensional "primitive" equations of geophysical fluid flows are analyzed. We prove existence on infinite time intervals of regular solutions to the 3D "primitive" Navier-Stokes equations for strong stratification (large stratification parameter N). This uniform existence is proven for periodic or stress-free boundary conditions for all domain aspect ratios, including the case of three wave resonances which yield nonlinear "$2\frac{1}{2}$ dimensional" limit equations for N → +∞; smoothness assumptions are the same as for local existence theorems, that is initial data in Hα, α ≥ 3/4. The global existence is proven using techniques of the Littlewood-Paley dyadic decomposition. Infinite time regularity for solutions of the 3D "primitive" Navier-Stokes equations is obtained by bootstrapping from global regularity of the limit resonant equations and convergence theorems.
LA - eng
KW - Fast singular oscillating limits; three-dimensional Navier-Stokes equations; primitive equations for geophysical fluid flows.; three-dimensional primitive equations; primitive Navier-Stokes equations; infinite time regularity; fast singular oscillating limits; geophysical flows; infinite time intervals; regular solutions; strong stratification; global existence; Littlewood-Paley dyadic decomposition; limit resonance equations; convergence
UR - http://eudml.org/doc/197472
ER -

References

top
  1. V.I. Arnold, Small denominators. I. Mappings of the circumference onto itself. Amer. Math. Soc. Transl. Ser. 2.46 (1965) 213-284.  
  2. V.I. Arnold and B.A. Khesin, Topological Methods in Hydrodynamics. Appl. Math. Sci.125 (1997).  
  3. J. Avrin, A. Babin, A. Mahalov and B. Nicolaenko, On regularity of solutions of 3D Navier-Stokes equations. Appl. Anal.71 (1999) 197-214.  
  4. A. Babin, A. Mahalov and B. Nicolaenko, Long-time averaged Euler and Navier-Stokes equations for rotating fluids, In Structure and Dynamics of Nonlinear Waves in Fluids, 1994 IUTAM Conference, K. Kirchgässner and A. Mielke Eds, World Scientific (1995) 145-157.  
  5. A. Babin, A. Mahalov and B. Nicolaenko, Global splitting, integrability and regularity of 3D Euler and Navier-Stokes equations for uniformly rotating fluids. Europ. J. Mech. B/Fluids15, No. 3, (1996) 291-300.  
  6. A. Babin, A. Mahalov and B. Nicolaenko, Resonances and regularity for Boussinesq equations. Russian J. Math. Phys.4, No. 4, (1996) 417-428.  
  7. A. Babin, A. Mahalov and B. Nicolaenko, Regularity and integrability of rotating shallow-water equations. Proc. Acad. Sci. Paris Ser. 1324 (1997) 593-598.  
  8. A. Babin, A. Mahalov and B. Nicolaenko, Global regularity and integrability of 3D Euler and Navier-Stokes equations for uniformly rotating fluids. Asympt. Anal.15 (1997) 103-150.  
  9. A. Babin, A. Mahalov and B. Nicolaenko, Global splitting and regularity of rotating shallow-water equations. Eur. J. Mech., B/Fluids16, No. 1, (1997) 725-754.  
  10. A. Babin, A. Mahalov and B. Nicolaenko, On the nonlinear baroclinic waves and adjustment of pancake dynamics. Theor. and Comp. Fluid Dynamics11 (1998) 215-235.  
  11. A. Babin, A. Mahalov, B. Nicolaenko and Y. Zhou, On the asymptotic regimes and the strongly stratified limit of rotating Boussinesq equations. Theor. and Comp. Fluid Dyn.9 (1997) 223-251.  
  12. A. Babin, A. Mahalov and B. Nicolaenko, On the regularity of three-dimensional rotating Euler-Boussinesq equations. Math. Models Methods Appl. Sci., 9, No. 7 (1999) 1089-1121.  
  13. A. Babin, A. Mahalov and B. Nicolaenko, Global regularity of 3D rotating Navier-Stokes equations for resonant domains. Lett. Appl. Math. (to appear).  
  14. A. Babin, A. Mahalov and B. Nicolaenko, Global Regularity of 3D Rotating Navier-Stokes Equations for Resonant Domains. Indiana University Mathematics Journal48, No. 3, (1999) 1133-1176.  
  15. A. Babin, A. Mahalov and B. Nicolaenko, Fast singular oscillating limits of stably stratified three-dimensional Euler-Boussinesq equations and ageostrophic wave fronts, to appear in Mathematics of Atmosphere and Ocean Dynamics, Cambridge University Press (1999).  
  16. A.V. Babin and M.I. Vishik, Attractors of Evolution Equations, North-Holland, Amsterdam (1992).  
  17. C. Bardos and S. Benachour, Domaine d'analycité des solutions de l'équation d'Euler dans un ouvert de n . Annali della Scuola Normale Superiore di Pisa4 (1977) 647-687.  
  18. P. Bartello, Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atm. Sci.52, No. 24, (1995) 4410-4428.  
  19. A.J. Bourgeois and J.T. Beale, Validity of the quasigeostrophic model for large-scale flow in the atmosphere and the ocean, SIAM J. Math. Anal.25, No. 4, (1994) 1023-1068.  
  20. L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math.35 (1982) 771-831.  
  21. J.-Y. Chemin, A propos d'un probleme de pénalisation de type antisymétrique. Proc. Paris Acad. Sci.321 (1995) 861-864.  
  22. P. Constantin, The Littlewood-Paley spectrum in two-dimensional turbulence, Theor. and Comp. Fluid Dyn.9, No. 3/4, (1997) 183-191.  
  23. P. Constantin and C. Foias, Navier-Stokes Equations, The University of Chicago Press (1988).  
  24. A. Craya, Contribution à l'analyse de la turbulence associée à des vitesses moyennes. P.S.T. Ministère de l'Air345 (1958).  
  25. P.G. Drazin and W.H. Reid, Hydrodynamic Stability, Cambridge University Press (1981).  
  26. P.F. Embid and A.J. Majda, Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity, Comm. Partial Diff. Eqs.21 (1996) 619-658.  
  27. I. Gallagher, Un résultat de stabilité pour les équations des fluides tournants, C.R. Acad. Sci. Paris, Série I (1997) 183-186.  
  28. I. Gallagher, Asymptotics of the solutions of hyperbolic equations with a skew-symmetric perturbation. J. Differential Equations150 (1998) 363-384.  
  29. I. Gallagher, Applications of Schochet's methods to parabolic equations. J. Math. Pures Appl.77 (1998) 989-1054.  
  30. E. Grenier, Rotating fluids and inertial waves. Proc. Acad Sci. Paris Ser. 1321 (1995) 711-714.  
  31. J.L. Joly, G. Métivier and J. Rauch, Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves. Duke Math. J.70 (1993) 373-404.  
  32. J.L. Joly, G. Métivier and J. Rauch, Resonant one-dimensional nonlinear geometric optics. J. Funct. Anal.114 (1993) 106-231.  
  33. J.L. Joly, G. Métivier and J. Rauch, Coherent nonlinear waves and the Wiener algebra. Ann. Inst. Fourier44 (1994) 167-196.  
  34. J.L. Joly, G. Métivier and J. Rauch, Coherent and focusing multidimensional nonlinear geometric optics. Ann. Scient. E. N. S. Paris 4 (1995) 28, 51-113.  
  35. D.A. Jones, A. Mahalov and B. Nicolaenko, A numerical study of an operator splitting method for rotating flows with large ageostrophic initial data. Theor. and Comp. Fluid Dyn.13, No. 2, (1998) 143-159.  
  36. O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incompressible Flow, 2nd edition, Gordon and Breach, New York (1969).  
  37. J.-L. Lions, R. Temam and S. Wang, Geostrophic asymptotics of the primitive equations of the atmosphere. Topological Methods in Nonlinear Analysis4 (1994) 253-287, special issue dedicated to J. Leray.  
  38. J.-L. Lions, R. Temam and S. Wang, A simple global model for the general circulation of the atmosphere. Comm. Pure Appl. Math.50 (1997) 707-752.  
  39. A. Mahalov, S. Leibovich and E.S. Titi, Invariant helical subspaces for the Navier-Stokes Equations. Arch. for Rational Mech. and Anal.112, No. 3, (1990) 193-222.  
  40. A. Mahalov and P.S. Marcus, Long-time averaged rotating shallow-water equations, Proc. of the First Asian Computational Fluid Dynamics Conference, W.H. Hui, Y.-K. Kwok and J.R. Chasnov Eds, vol. 3, Hong Kong University of Science and Technology (1995) 1227-1230.  
  41. O. Métais and J.R. Herring, Numerical experiments of freely evolving turbulence in stably stratified fluids. J. Fluid Mech.202 (1989) 117.  
  42. J. Pedlosky, Geophysical Fluid Dynamics, 2nd edition, Springer-Verlag (1987).  
  43. H. Poincaré, Sur la précession des corps déformables. Bull. Astronomique27 (1910) 321.  
  44. G. Raugel and G. Sell, Navier-Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions, J. Amer. Math. Soc.6, No. 3, (1993) 503-568.  
  45. S. Schochet, Fast singular limits of hyperbolic PDE's. J. Differential Equations114 (1994) 476-512.  
  46. E.M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press (1970).  
  47. S.L. Sobolev, Ob odnoi novoi zadache matematicheskoi fiziki. Izvestiia Akademii Nauk SSSR, Ser. Matematicheskaia. 18, No. 1, (1954) 3-50.  
  48. R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, North-Holland, Amsterdam (1984).  
  49. R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, SIAM, Philadelphia (1983).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.