Coherent nonlinear waves and the Wiener algebra
Guy Métivier; Jean-Luc Joly; Jeffrey Rauch
Annales de l'institut Fourier (1994)
- Volume: 44, Issue: 1, page 167-196
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topMétivier, Guy, Joly, Jean-Luc, and Rauch, Jeffrey. "Coherent nonlinear waves and the Wiener algebra." Annales de l'institut Fourier 44.1 (1994): 167-196. <http://eudml.org/doc/75053>.
@article{Métivier1994,
abstract = {We study oscillatory solutions of semilinear first order symmetric hyperbolic system $Lu=f(t, x, u, \overline\{u\})$, with real analytic $f$.The main advance in this paper is that it treats multidimensional problems with profiles that are almost periodic in $T, X$ with only the natural hypothesis of coherence.In the special case where $L$ has constant coefficients and the phases are linear, the solutions have asymptotic description\begin\{\} u^\varepsilon = U(t, x, t/\varepsilon , x/\varepsilon ) + o(1) \end\{\}where the profile $U(t, x, T, X)$ is almost periodic in $(T, X)$.The main novelty in the analysis is the space of profiles which have the form\begin\{\} U=\sum \_\{\tau , \omega \in \{\Bbb R\}^\{1+d\}\} U\_\{\tau , \omega \} (t, x)e^\{i(\tau T+\omega .X)\}, \sum \Vert U\_\{\tau , \omega \}(t, x)\Vert \_\{C([0, t]:H^s(\{\Bbb R\}^d))\}< \infty .\end\{\}Thus, $U$ is an element of the Wiener algebra as a function of the fast variables.The profile $U$ is uniquely determined from the initial data of $u^\varepsilon $ by profile equations of standard from.An application to conical refraction where the characteristics have variable multiplicity is presented.},
author = {Métivier, Guy, Joly, Jean-Luc, Rauch, Jeffrey},
journal = {Annales de l'institut Fourier},
keywords = {interaction of high frequency solutions; geometric optics; crystal optics; oscillatory solutions; semilinear first order symmetric hyperbolic system; constant coefficients; Wiener algebra; application to conical refraction},
language = {eng},
number = {1},
pages = {167-196},
publisher = {Association des Annales de l'Institut Fourier},
title = {Coherent nonlinear waves and the Wiener algebra},
url = {http://eudml.org/doc/75053},
volume = {44},
year = {1994},
}
TY - JOUR
AU - Métivier, Guy
AU - Joly, Jean-Luc
AU - Rauch, Jeffrey
TI - Coherent nonlinear waves and the Wiener algebra
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 1
SP - 167
EP - 196
AB - We study oscillatory solutions of semilinear first order symmetric hyperbolic system $Lu=f(t, x, u, \overline{u})$, with real analytic $f$.The main advance in this paper is that it treats multidimensional problems with profiles that are almost periodic in $T, X$ with only the natural hypothesis of coherence.In the special case where $L$ has constant coefficients and the phases are linear, the solutions have asymptotic description\begin{} u^\varepsilon = U(t, x, t/\varepsilon , x/\varepsilon ) + o(1) \end{}where the profile $U(t, x, T, X)$ is almost periodic in $(T, X)$.The main novelty in the analysis is the space of profiles which have the form\begin{} U=\sum _{\tau , \omega \in {\Bbb R}^{1+d}} U_{\tau , \omega } (t, x)e^{i(\tau T+\omega .X)}, \sum \Vert U_{\tau , \omega }(t, x)\Vert _{C([0, t]:H^s({\Bbb R}^d))}< \infty .\end{}Thus, $U$ is an element of the Wiener algebra as a function of the fast variables.The profile $U$ is uniquely determined from the initial data of $u^\varepsilon $ by profile equations of standard from.An application to conical refraction where the characteristics have variable multiplicity is presented.
LA - eng
KW - interaction of high frequency solutions; geometric optics; crystal optics; oscillatory solutions; semilinear first order symmetric hyperbolic system; constant coefficients; Wiener algebra; application to conical refraction
UR - http://eudml.org/doc/75053
ER -
References
top- [BW]M. BORN and E. WOLF, Principles of optics, 4th ed., Pergamon Press, Oxford, 1970.
- [CB]Y. CHOQUET-BRUHAT, Ondes asymptotiques et approchées pour systèmes d'équations aux dérivées partielles non linéaires, J. Math. Pure Appl., 48 (1969), 117-158. Zbl0177.36404MR41 #624
- [C]R. COURANT, Methods of mathematical physics, vol. II, Interscience Publishers, 1962. Zbl0099.29504
- [D]J.-M. DELORT, Oscillations semi-linéaires multiphasées compatibles en dimension 2 et 3 d'espace, J. Diff. Eq., 1991. Zbl0736.35001
- [DM]R. DIPERNA and A. MAJDA, The validity of geometric optics for weak solutions of conservation laws, Comm. Math. Phys., 98 (1985), 313-347. Zbl0582.35081MR87e:35057
- [G1]O. GUES, Développements asymptotiques de solutions exactes de systèmes hyperboliques quasilinéaires, Asymptotic Anal., 1993. Zbl0780.35017
- [G2]O. GUES, Ondes multidimensionnelles epsilon stratifiées et oscillations, Duke Math. J., 1992. Zbl0837.35086MR94a:35011
- [Hor]L. HORMANDER, The analysis of linear partial differential operators, vol. 1, Springer-Verlag, 1991.
- [Hou]T. HOU, Homogenization for semilinear hyperbolic systems with oscillatory data, Comm. Pure Appl. Math., 41 (1988), 471-495. Zbl0632.35039MR89k:35136
- [HK]J. HUNTER and J. KELLER, Weakly nonlinear high frequency waves, Comm. Pure Appl. Math., 36 (1983), 547-569. Zbl0547.35070MR85h:35143
- [HMR]J. HUNTER, A. MAJDA and R. ROSALES, Resonantly interacting weakly nonlinear hyperbolic waves II : several space variables, Stud. Appl. Math., 75 (1986), 187-226. Zbl0657.35084MR89h:35199
- [JMR1] J.-L. JOLY, G. MÉTIVIER and J. RAUCH, Resonant one dimensional non linear geometric optics, J. Funct. Anal., 114 (1993), 106-231. Zbl0851.35023MR94i:35118
- [JMR2]J.-L. JOLY, G. MÉTIVIER and J. RAUCH, Rigorous resonant 1−d nonlinear geometric optics, in Journées Équations aux Dérivées Partielles, St Jean de Monts, juin 1990, Publ. de l'École Polytechnique, Palaiseau. Zbl0718.35094MR92e:35104
- [JMR3]J.-L. JOLY, G. MÉTIVIER and J. RAUCH, Formal and rigorous nonlinear high frequency hyperbolic waves, in Nonlinear Hyperbolic Equations and Field Theory, eds. M.K.V. Murthy and S. Spagnolo, Pitmann Research Notes in Mathematics #253, 1992, 121-144. Zbl0824.35077MR93j:35112
- [JMR4]J.-L. JOLY, G. MÉTIVIER and J. RAUCH, Remarques sur l'optique géométrique non linéaire multidimensionnelle, Séminaire Équations aux Dérivées Partielles, École Polytechnique, exposé n° 1, 1990-1991. Zbl0749.35055
- [JMR5]J.-L. JOLY, G. MÉTIVIER and J. RAUCH, Coherent and focussing multidimensional nonlinear geometric optics, Annales de l'École Normale Supérieure, to appear. Zbl0836.35087
- [JMR6]J.-L. JOLY, G. MÉTIVIER and J. RAUCH, Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves, Duke Math. J., 70 (1993), 373-404. Zbl0815.35066MR94c:35048
- [JMR7]J.-L. JOLY, G. MÉTIVIER and J. RAUCH, Nonlinear geometric optics with an oscillating plane, preprint.
- [J]J.-L. JOLY, Sur la propagation des oscillations semi-linéaires en dimension 1 d'espace, C.R. Acad. Sc. Paris, t. 296 (1983). Zbl0555.35081MR84j:35112
- [JR1]J.-L. JOLY and J. RAUCH, Ondes oscillantes semi-linéaires en 1−d, in Journées Équations aux Dérivées Partielles, St Jean de Monts, juin 1986, Publ. de l'École Polytechnique, Palaiseau. Zbl0614.35002MR874553
- [JR2]J.-L. JOLY and J. RAUCH, Ondes oscillantes semi-linéaires à hautes fréquences, in Recent Developments in Hyperbolic Equations, (L. Cattabriga, F. Colombini, M. Murthy, S. Spagnolo, eds.), Pitman Research Notes in Math., 183 (1988), 103-115. Zbl0724.35070MR90d:35173
- [JR3]J.-L. JOLY and J. RAUCH, High frequency semilinear oscillations, in Wave Motion : Theory, Modelling and Computation (A.-J. Chorin and A.-J. Majda, eds.), Springer-Verlag (1987), 202-217. Zbl0703.35103MR89c:35096
- [JR4]J.-L. JOLY and J. RAUCH, Nonlinear resonance can create dense oscillations, in Microlocal Analysis and Nonlinear Waves, M. Beals, R. Melrose and J. Rauch eds.), Springer-Verlag (1991), 113-123. Zbl0794.35098MR92k:35180
- [JR5]J.-L. JOLY and J. RAUCH, Justification of multidimensional single phase semilinear geometric optics, Trans. Amer. Math. Soc., 330 (1992), 599-625. Zbl0771.35010MR92f:35040
- [KAl]L.-A. KALYAKIN, Long wave asymptotics, integrable equations as asymptotic limit of nonlinear systems, Russian Math. Surveys, vol. 44, n° 1 (1989), 3-42. Zbl0683.35082
- [Kat]Y. KATZNELSON, An introduction to harmonic analysis 2d ed., Dover Publ., 1976. Zbl0352.43001MR54 #10976
- [Kl]S. KLAINERMAN, The null condition and global existence to nonlinear wave equations, Springer Lectures in Applied Mathematics, 23 (1986), 293-326. Zbl0599.35105MR87h:35217
- [Kr]H.-O. KREISS, Über sachgemässe cauchyprobleme, Math. Scand., 13 (1963), 109-128. Zbl0145.13303MR29 #6177
- [La]P.-D. LAX, Asymptotic solutions of oscillatory initial value problems, Duke Math. J., 24 (1957), 627-646. Zbl0083.31801MR20 #4096
- [Lu]D. LUDWIG, Conical refraction in crystal optics and hydromagnetics, Comm. Pure Appl. Math., XIV (1961), 113-124. Zbl0112.21202MR23 #B748
- [MR]A. MAJDA and R. ROSALES, Resonantly interacting weakly nonlinear hyperbolic waves I : a single space variable, Stud. Appl. Math., 71 (1984), 149-179. Zbl0572.76066MR86e:35089
- [MRS]A. MAJDA, R. ROSALES and M. SCHONBEK, A canonical system of integrodifferential equations in nonlinear acoustics, Stud. Appl. Math., 79 (1988), 205-262. Zbl0669.76103MR90g:76077
- [MPT]D. MACLAUGHLIN, G. PAPANICOLAU and L. TARTAR, Weak limits of semilinear hyperbolic systems with oscillating data, Lecture Notes in Physics 230, Springer-Verlag (1985), 277-289. Zbl0588.76137MR815948
- [MU]R. MELROSE and G. UHLMANN, Microlocal structure of involutive conical refraction, Duke Math. J., 46 (1979), 118-133. Zbl0422.58026MR81b:58044
- [S]S. SCHOCHET, Fast singular limits of hyperbolic partial differential equations, J. Diff. Eq., to appear. Zbl0838.35071
- [Tar]L. TARTAR, Solutions oscillantes des équations de Carleman, Séminaire Goulaouic-Meyer-Schwartz, 1983. Zbl0481.35010
- [Tay]M. TAYLOR, Pseudodifferential operators, Princeton Mathematics Series #34, Princeton University Press, Princeton N.J., 1981. Zbl0453.47026MR82i:35172
Citations in EuDML Documents
top- Jean-Luc Joly, Guy Métivier, Jeffrey Rauch, Optique géométrique non linéaire et équations de Maxwell-Bloch
- Anatoli Babin, Alex Mahalov, Basil Nicolaenko, Fast singular oscillating limits and global regularity for the 3D primitive equations of geophysics
- J.-L. Joly, G. Métivier, J. Rauch, Coherent and focusing multidimensional nonlinear geometric optics
- Laure Saint-Raymond, Mathematical study of singular perturbation problems Applications to large-scale oceanography
- Anatoli Babin, Alex Mahalov, Basil Nicolaenko, Fast Singular Oscillating Limits and Global Regularity for the 3D Primitive Equations of Geophysics
- P. Donnat, J.-L. Joly, G. Métivier, J. Rauch, Diffractive nonlinear geometric optics
- Mark Williams, Boundary layers and glancing blow-up in nonlinear geometric optics
- J. L. Joly, G. Métivier, J. Rauch, Compacité par compensation trilinéaire et optique géométrique non linéaire
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.