Coherent nonlinear waves and the Wiener algebra

Guy Métivier; Jean-Luc Joly; Jeffrey Rauch

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 1, page 167-196
  • ISSN: 0373-0956

Abstract

top
We study oscillatory solutions of semilinear first order symmetric hyperbolic system L u = f ( t , x , u , u ) , with real analytic f .The main advance in this paper is that it treats multidimensional problems with profiles that are almost periodic in T , X with only the natural hypothesis of coherence.In the special case where L has constant coefficients and the phases are linear, the solutions have asymptotic description u ϵ = U ( t , x , t / ϵ , x / ϵ ) + o ( 1 ) where the profile U ( t , x , T , X ) is almost periodic in ( T , X ) .The main novelty in the analysis is the space of profiles which have the form U = τ , ω 1 + d U τ , ω ( t , x ) e i ( τ T + ω . X ) , U τ , ω ( t , x ) C ( [ 0 , t ] : H s ( d ) ) < . Thus, U is an element of the Wiener algebra as a function of the fast variables.The profile U is uniquely determined from the initial data of u ϵ by profile equations of standard from.An application to conical refraction where the characteristics have variable multiplicity is presented.

How to cite

top

Métivier, Guy, Joly, Jean-Luc, and Rauch, Jeffrey. "Coherent nonlinear waves and the Wiener algebra." Annales de l'institut Fourier 44.1 (1994): 167-196. <http://eudml.org/doc/75053>.

@article{Métivier1994,
abstract = {We study oscillatory solutions of semilinear first order symmetric hyperbolic system $Lu=f(t, x, u, \overline\{u\})$, with real analytic $f$.The main advance in this paper is that it treats multidimensional problems with profiles that are almost periodic in $T, X$ with only the natural hypothesis of coherence.In the special case where $L$ has constant coefficients and the phases are linear, the solutions have asymptotic description\begin\{\} u^\varepsilon = U(t, x, t/\varepsilon , x/\varepsilon ) + o(1) \end\{\}where the profile $U(t, x, T, X)$ is almost periodic in $(T, X)$.The main novelty in the analysis is the space of profiles which have the form\begin\{\} U=\sum \_\{\tau , \omega \in \{\Bbb R\}^\{1+d\}\} U\_\{\tau , \omega \} (t, x)e^\{i(\tau T+\omega .X)\}, \sum \Vert U\_\{\tau , \omega \}(t, x)\Vert \_\{C([0, t]:H^s(\{\Bbb R\}^d))\}&lt; \infty .\end\{\}Thus, $U$ is an element of the Wiener algebra as a function of the fast variables.The profile $U$ is uniquely determined from the initial data of $u^\varepsilon $ by profile equations of standard from.An application to conical refraction where the characteristics have variable multiplicity is presented.},
author = {Métivier, Guy, Joly, Jean-Luc, Rauch, Jeffrey},
journal = {Annales de l'institut Fourier},
keywords = {interaction of high frequency solutions; geometric optics; crystal optics; oscillatory solutions; semilinear first order symmetric hyperbolic system; constant coefficients; Wiener algebra; application to conical refraction},
language = {eng},
number = {1},
pages = {167-196},
publisher = {Association des Annales de l'Institut Fourier},
title = {Coherent nonlinear waves and the Wiener algebra},
url = {http://eudml.org/doc/75053},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Métivier, Guy
AU - Joly, Jean-Luc
AU - Rauch, Jeffrey
TI - Coherent nonlinear waves and the Wiener algebra
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 1
SP - 167
EP - 196
AB - We study oscillatory solutions of semilinear first order symmetric hyperbolic system $Lu=f(t, x, u, \overline{u})$, with real analytic $f$.The main advance in this paper is that it treats multidimensional problems with profiles that are almost periodic in $T, X$ with only the natural hypothesis of coherence.In the special case where $L$ has constant coefficients and the phases are linear, the solutions have asymptotic description\begin{} u^\varepsilon = U(t, x, t/\varepsilon , x/\varepsilon ) + o(1) \end{}where the profile $U(t, x, T, X)$ is almost periodic in $(T, X)$.The main novelty in the analysis is the space of profiles which have the form\begin{} U=\sum _{\tau , \omega \in {\Bbb R}^{1+d}} U_{\tau , \omega } (t, x)e^{i(\tau T+\omega .X)}, \sum \Vert U_{\tau , \omega }(t, x)\Vert _{C([0, t]:H^s({\Bbb R}^d))}&lt; \infty .\end{}Thus, $U$ is an element of the Wiener algebra as a function of the fast variables.The profile $U$ is uniquely determined from the initial data of $u^\varepsilon $ by profile equations of standard from.An application to conical refraction where the characteristics have variable multiplicity is presented.
LA - eng
KW - interaction of high frequency solutions; geometric optics; crystal optics; oscillatory solutions; semilinear first order symmetric hyperbolic system; constant coefficients; Wiener algebra; application to conical refraction
UR - http://eudml.org/doc/75053
ER -

References

top
  1. [BW]M. BORN and E. WOLF, Principles of optics, 4th ed., Pergamon Press, Oxford, 1970. 
  2. [CB]Y. CHOQUET-BRUHAT, Ondes asymptotiques et approchées pour systèmes d'équations aux dérivées partielles non linéaires, J. Math. Pure Appl., 48 (1969), 117-158. Zbl0177.36404MR41 #624
  3. [C]R. COURANT, Methods of mathematical physics, vol. II, Interscience Publishers, 1962. Zbl0099.29504
  4. [D]J.-M. DELORT, Oscillations semi-linéaires multiphasées compatibles en dimension 2 et 3 d'espace, J. Diff. Eq., 1991. Zbl0736.35001
  5. [DM]R. DIPERNA and A. MAJDA, The validity of geometric optics for weak solutions of conservation laws, Comm. Math. Phys., 98 (1985), 313-347. Zbl0582.35081MR87e:35057
  6. [G1]O. GUES, Développements asymptotiques de solutions exactes de systèmes hyperboliques quasilinéaires, Asymptotic Anal., 1993. Zbl0780.35017
  7. [G2]O. GUES, Ondes multidimensionnelles epsilon stratifiées et oscillations, Duke Math. J., 1992. Zbl0837.35086MR94a:35011
  8. [Hor]L. HORMANDER, The analysis of linear partial differential operators, vol. 1, Springer-Verlag, 1991. 
  9. [Hou]T. HOU, Homogenization for semilinear hyperbolic systems with oscillatory data, Comm. Pure Appl. Math., 41 (1988), 471-495. Zbl0632.35039MR89k:35136
  10. [HK]J. HUNTER and J. KELLER, Weakly nonlinear high frequency waves, Comm. Pure Appl. Math., 36 (1983), 547-569. Zbl0547.35070MR85h:35143
  11. [HMR]J. HUNTER, A. MAJDA and R. ROSALES, Resonantly interacting weakly nonlinear hyperbolic waves II : several space variables, Stud. Appl. Math., 75 (1986), 187-226. Zbl0657.35084MR89h:35199
  12. [JMR1] J.-L. JOLY, G. MÉTIVIER and J. RAUCH, Resonant one dimensional non linear geometric optics, J. Funct. Anal., 114 (1993), 106-231. Zbl0851.35023MR94i:35118
  13. [JMR2]J.-L. JOLY, G. MÉTIVIER and J. RAUCH, Rigorous resonant 1−d nonlinear geometric optics, in Journées Équations aux Dérivées Partielles, St Jean de Monts, juin 1990, Publ. de l'École Polytechnique, Palaiseau. Zbl0718.35094MR92e:35104
  14. [JMR3]J.-L. JOLY, G. MÉTIVIER and J. RAUCH, Formal and rigorous nonlinear high frequency hyperbolic waves, in Nonlinear Hyperbolic Equations and Field Theory, eds. M.K.V. Murthy and S. Spagnolo, Pitmann Research Notes in Mathematics #253, 1992, 121-144. Zbl0824.35077MR93j:35112
  15. [JMR4]J.-L. JOLY, G. MÉTIVIER and J. RAUCH, Remarques sur l'optique géométrique non linéaire multidimensionnelle, Séminaire Équations aux Dérivées Partielles, École Polytechnique, exposé n° 1, 1990-1991. Zbl0749.35055
  16. [JMR5]J.-L. JOLY, G. MÉTIVIER and J. RAUCH, Coherent and focussing multidimensional nonlinear geometric optics, Annales de l'École Normale Supérieure, to appear. Zbl0836.35087
  17. [JMR6]J.-L. JOLY, G. MÉTIVIER and J. RAUCH, Generic rigorous asymptotic expansions for weakly nonlinear multidimensional oscillatory waves, Duke Math. J., 70 (1993), 373-404. Zbl0815.35066MR94c:35048
  18. [JMR7]J.-L. JOLY, G. MÉTIVIER and J. RAUCH, Nonlinear geometric optics with an oscillating plane, preprint. 
  19. [J]J.-L. JOLY, Sur la propagation des oscillations semi-linéaires en dimension 1 d'espace, C.R. Acad. Sc. Paris, t. 296 (1983). Zbl0555.35081MR84j:35112
  20. [JR1]J.-L. JOLY and J. RAUCH, Ondes oscillantes semi-linéaires en 1−d, in Journées Équations aux Dérivées Partielles, St Jean de Monts, juin 1986, Publ. de l'École Polytechnique, Palaiseau. Zbl0614.35002MR874553
  21. [JR2]J.-L. JOLY and J. RAUCH, Ondes oscillantes semi-linéaires à hautes fréquences, in Recent Developments in Hyperbolic Equations, (L. Cattabriga, F. Colombini, M. Murthy, S. Spagnolo, eds.), Pitman Research Notes in Math., 183 (1988), 103-115. Zbl0724.35070MR90d:35173
  22. [JR3]J.-L. JOLY and J. RAUCH, High frequency semilinear oscillations, in Wave Motion : Theory, Modelling and Computation (A.-J. Chorin and A.-J. Majda, eds.), Springer-Verlag (1987), 202-217. Zbl0703.35103MR89c:35096
  23. [JR4]J.-L. JOLY and J. RAUCH, Nonlinear resonance can create dense oscillations, in Microlocal Analysis and Nonlinear Waves, M. Beals, R. Melrose and J. Rauch eds.), Springer-Verlag (1991), 113-123. Zbl0794.35098MR92k:35180
  24. [JR5]J.-L. JOLY and J. RAUCH, Justification of multidimensional single phase semilinear geometric optics, Trans. Amer. Math. Soc., 330 (1992), 599-625. Zbl0771.35010MR92f:35040
  25. [KAl]L.-A. KALYAKIN, Long wave asymptotics, integrable equations as asymptotic limit of nonlinear systems, Russian Math. Surveys, vol. 44, n° 1 (1989), 3-42. Zbl0683.35082
  26. [Kat]Y. KATZNELSON, An introduction to harmonic analysis 2d ed., Dover Publ., 1976. Zbl0352.43001MR54 #10976
  27. [Kl]S. KLAINERMAN, The null condition and global existence to nonlinear wave equations, Springer Lectures in Applied Mathematics, 23 (1986), 293-326. Zbl0599.35105MR87h:35217
  28. [Kr]H.-O. KREISS, Über sachgemässe cauchyprobleme, Math. Scand., 13 (1963), 109-128. Zbl0145.13303MR29 #6177
  29. [La]P.-D. LAX, Asymptotic solutions of oscillatory initial value problems, Duke Math. J., 24 (1957), 627-646. Zbl0083.31801MR20 #4096
  30. [Lu]D. LUDWIG, Conical refraction in crystal optics and hydromagnetics, Comm. Pure Appl. Math., XIV (1961), 113-124. Zbl0112.21202MR23 #B748
  31. [MR]A. MAJDA and R. ROSALES, Resonantly interacting weakly nonlinear hyperbolic waves I : a single space variable, Stud. Appl. Math., 71 (1984), 149-179. Zbl0572.76066MR86e:35089
  32. [MRS]A. MAJDA, R. ROSALES and M. SCHONBEK, A canonical system of integrodifferential equations in nonlinear acoustics, Stud. Appl. Math., 79 (1988), 205-262. Zbl0669.76103MR90g:76077
  33. [MPT]D. MACLAUGHLIN, G. PAPANICOLAU and L. TARTAR, Weak limits of semilinear hyperbolic systems with oscillating data, Lecture Notes in Physics 230, Springer-Verlag (1985), 277-289. Zbl0588.76137MR815948
  34. [MU]R. MELROSE and G. UHLMANN, Microlocal structure of involutive conical refraction, Duke Math. J., 46 (1979), 118-133. Zbl0422.58026MR81b:58044
  35. [S]S. SCHOCHET, Fast singular limits of hyperbolic partial differential equations, J. Diff. Eq., to appear. Zbl0838.35071
  36. [Tar]L. TARTAR, Solutions oscillantes des équations de Carleman, Séminaire Goulaouic-Meyer-Schwartz, 1983. Zbl0481.35010
  37. [Tay]M. TAYLOR, Pseudodifferential operators, Princeton Mathematics Series #34, Princeton University Press, Princeton N.J., 1981. Zbl0453.47026MR82i:35172

Citations in EuDML Documents

top
  1. Jean-Luc Joly, Guy Métivier, Jeffrey Rauch, Optique géométrique non linéaire et équations de Maxwell-Bloch
  2. Anatoli Babin, Alex Mahalov, Basil Nicolaenko, Fast singular oscillating limits and global regularity for the 3D primitive equations of geophysics
  3. J.-L. Joly, G. Métivier, J. Rauch, Coherent and focusing multidimensional nonlinear geometric optics
  4. Laure Saint-Raymond, Mathematical study of singular perturbation problems Applications to large-scale oceanography
  5. Anatoli Babin, Alex Mahalov, Basil Nicolaenko, Fast Singular Oscillating Limits and Global Regularity for the 3D Primitive Equations of Geophysics
  6. P. Donnat, J.-L. Joly, G. Métivier, J. Rauch, Diffractive nonlinear geometric optics
  7. Mark Williams, Boundary layers and glancing blow-up in nonlinear geometric optics
  8. J. L. Joly, G. Métivier, J. Rauch, Compacité par compensation trilinéaire et optique géométrique non linéaire

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.