A spectral study of an infinite axisymmetric elastic layer
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 35, Issue: 5, page 849-863
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topChorfi, Lahcène. "A spectral study of an infinite axisymmetric elastic layer." ESAIM: Mathematical Modelling and Numerical Analysis 35.5 (2010): 849-863. <http://eudml.org/doc/197502>.
@article{Chorfi2010,
abstract = {
We present here a theoretical study of eigenmodes
in
axisymmetric elastic layers.
The mathematical modelling allows us to bring this problem to a spectral
study
of a sequence of unbounded self-adjoint operators An, $n\in \mathbb\{N\}$, in a
suitable
Hilbert space. We show that the essential spectrum of An is an interval
of
type $[\gamma,+\infty[$ and that, under certain conditions on the
coefficients
of the medium, the discrete spectrum is non empty.
},
author = {Chorfi, Lahcène},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Elasticity; axisymmetry; eigenmodes; min-max principle.; elasticity; axisymmetric layer; waves; spectral theory; eigenvalues; Hilbert spaces},
language = {eng},
month = {3},
number = {5},
pages = {849-863},
publisher = {EDP Sciences},
title = {A spectral study of an infinite axisymmetric elastic layer},
url = {http://eudml.org/doc/197502},
volume = {35},
year = {2010},
}
TY - JOUR
AU - Chorfi, Lahcène
TI - A spectral study of an infinite axisymmetric elastic layer
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 35
IS - 5
SP - 849
EP - 863
AB -
We present here a theoretical study of eigenmodes
in
axisymmetric elastic layers.
The mathematical modelling allows us to bring this problem to a spectral
study
of a sequence of unbounded self-adjoint operators An, $n\in \mathbb{N}$, in a
suitable
Hilbert space. We show that the essential spectrum of An is an interval
of
type $[\gamma,+\infty[$ and that, under certain conditions on the
coefficients
of the medium, the discrete spectrum is non empty.
LA - eng
KW - Elasticity; axisymmetry; eigenmodes; min-max principle.; elasticity; axisymmetric layer; waves; spectral theory; eigenvalues; Hilbert spaces
UR - http://eudml.org/doc/197502
ER -
References
top- A. Bamberger, Y. Dermenjian and P. Joly, Mathematical analysis of the propagation of elastic guided waves in heterogeneous media. J. Differential Equations88 (1990) 113-154.
- A. Bamberger, P. Joly and M. Kern, Propagation of elastic surface waves along a cylindrical cavity of arbitrary cross section. RAIRO Modél. Math. Anal. Numér.25 (1991) 1-30.
- M. Bouchon and D.P. Schmitt, Full-wave acoustic logging in an irregular borehole. Geophysics54 (1989) 758-765.
- L. Chorfi, Étude mathématique des modes guidés dans un milieu élastique à symétrie de révolution. RAIRO Modél. Math. Anal. Numér.30 (1996) 299-342.
- D.J. Duterte, A.S. Bonnet-Ben Dhia and P. Joly, Mathematical analysis of elastic surface waves in topographic waveguides. M 3AS (Math. Models Methods Appl. Sci.)9 (1999) 755-798.
- G. Duvaut, Mécanique des milieux continus. Masson, Paris (1990).
- T. Kato, Perturbation Theory for Linear Operators. 2nd edn., Springer-Verlag, New York (1976).
- J. Miklowitz, The Theory of Elastic Waves and Wave Guides. North-Holland Publishing Company, Amsterdam, New York, Oxford (1980).
- J.A. Nitsche, On Korn's second inequality. RAIRO Anal. Numér.15 (1981) 237-248.
- B. Nkemzi and B. Heinrish, Partial Fourier approximation of the Lamé equation in axisymmetric domains. Math. Methods Appl. Sci.22 (1999) 1017-1041.
- M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV Analysis of Operators. Academic Press, New York, San Francisco, London (1978).
- M. Schechter, Operator Methods in Quantum Mechanics. North-Holland Publishing Company, Amsterdam, New York, Oxford (1981).
- G. A. Winbow, Seismic sources in open cased boreholes. Geophysics56 (1991) 1040-1050.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.