On Korn's second inequality

J. A. Nitsche

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (1981)

  • Volume: 15, Issue: 3, page 237-248
  • ISSN: 0764-583X

How to cite

top

Nitsche, J. A.. "On Korn's second inequality." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 15.3 (1981): 237-248. <http://eudml.org/doc/193380>.

@article{Nitsche1981,
author = {Nitsche, J. A.},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Korn's second inequality; boundary of the domain},
language = {eng},
number = {3},
pages = {237-248},
publisher = {Dunod},
title = {On Korn's second inequality},
url = {http://eudml.org/doc/193380},
volume = {15},
year = {1981},
}

TY - JOUR
AU - Nitsche, J. A.
TI - On Korn's second inequality
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 1981
PB - Dunod
VL - 15
IS - 3
SP - 237
EP - 248
LA - eng
KW - Korn's second inequality; boundary of the domain
UR - http://eudml.org/doc/193380
ER -

References

top
  1. [1] P. G. CIARLET, The Finite Element Method for Elliptic Problems. Studies in Mathematics and its Applications. North-Holland Publ. Comp., Amsterdam-New York- Oxford (1978). Zbl0383.65058MR520174
  2. [2] G. DUVAUT and J. L. LIONS, Les Inéquations en Mécanique et en Physique, Dunod, Paris (1972). Zbl0298.73001MR464857
  3. [3] G. FICHERA, Linear Elliptic Differential Systems and Eigenvalue Problems. Springer-Verlag, Berlin-Heidelberg-New York (1965). Zbl0138.36104MR209639
  4. [4] G. FICHERA, Existence theorems in elasticity-boundary value problems of elasticity with unilateral constraints. Encyclopedia of Physics (S. Flügge, Chief Editor), Vol. VIa/2 : Mechanics of Solids II (C. Truesdell, Editor), pp. 347-424, Springer-Verlag, Berlin (1972). 
  5. [5] K. O. FRIEDRICHS, On the boundary value problems of the theory of elasticity and Korn's inequality. Ann. of Math., 48, (1947), 441-471. Zbl0029.17002MR22750
  6. [6] A. KORN, Solution générale du problème d'équilibre dans la théorie de l'élasticité dans le cas où les efforts sont donnés à la surface. . Ann. Université Toulouse (1908), 165-269. Zbl39.0853.03JFM39.0853.03
  7. [7] A. KORN, Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bull. Intern. Cracov. Akad. umiejet (Classe Sci. Math. nat.) (1909) 706-724. Zbl40.0884.02JFM40.0884.02
  8. [8] L. E. PAYNE and H. F. WEINBERGER, On korn's inequality. Arch. Rational Mech. Anal., 8, (1961), 89-98. Zbl0107.31105MR158312
  9. [9] E. M. STEIN, Singular integrals and differentiability properties of functions. Princeton Univ. Press, Princeton, N. J. (1970). Zbl0207.13501MR290095
  10. [10] W. VELTE, Direkte Methoden der Variationsrechnung. . B. G. Teubner, Stuttgart (1976). Zbl0333.49035MR500387

Citations in EuDML Documents

top
  1. Florian Theil, Surface energies in a two-dimensional mass-spring model for crystals
  2. E. Bécache, T. Ha Duong, A space-time variational formulation for the boundary integral equation in a 2D elastic crack problem
  3. Eduard Feireisl, Šárka Matušů-Nečasová, The effective boundary conditions for vector fields on domains with rough boundaries: Applications to fluid mechanics
  4. Florian Theil, Surface energies in a two-dimensional mass-spring model for crystals
  5. A. Bamberger, P. Joly, M. Kern, Propagation of elastic surface waves along a cylindrical cavity of arbitrary cross section
  6. L. Desvillettes, Cédric Villani, On a variant of Korn’s inequality arising in statistical mechanics
  7. Ivan Hlaváček, Inequalities of Korn's type, uniform with respect to a class of domains
  8. L. Desvillettes, Cédric Villani, On a variant of Korn's inequality arising in statistical mechanics
  9. J. Haslinger, P. Neittaanmäki, Shape optimization in contact problems. Approximation and numerical realization
  10. Lynn Schreyer Bennethum, Xiaobing Feng, A domain decomposition method for solving a Helmholtz-like problem in elasticity based on the Wilson nonconforming element

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.