Bipolar Barotropic Non-Newtonian Compressible Fluids
Šárka Matušu-Nečasová; Mária Medviďová-Lukáčová
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 34, Issue: 5, page 923-934
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topMatušu-Nečasová, Šárka, and Medviďová-Lukáčová, Mária. "Bipolar Barotropic Non-Newtonian Compressible Fluids." ESAIM: Mathematical Modelling and Numerical Analysis 34.5 (2010): 923-934. <http://eudml.org/doc/197517>.
@article{Matušu2010,
abstract = {
We are interested in a barotropic motion of the non-Newtonian bipolar
fluids .
We consider a special
case where the stress tensor is expressed in the form of
potentials depending on eii and $(\frac\{\partial
e_\{ij\}\}\{\partial x_\{k\}\})$.
We prove the
asymptotic stability of the rest state under the assumption
of the regularity of the potential forces.
},
author = {Matušu-Nečasová, Šárka, Medviďová-Lukáčová, Mária},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Non-Newtonian compressible fluids; global
existence; uniqueness;
asymptotic stability; the rest state.; non-Newtonian compressible bipolar fluids; barotropic motion; stress tensor; asymptotic stability; regularity},
language = {eng},
month = {3},
number = {5},
pages = {923-934},
publisher = {EDP Sciences},
title = {Bipolar Barotropic Non-Newtonian Compressible Fluids},
url = {http://eudml.org/doc/197517},
volume = {34},
year = {2010},
}
TY - JOUR
AU - Matušu-Nečasová, Šárka
AU - Medviďová-Lukáčová, Mária
TI - Bipolar Barotropic Non-Newtonian Compressible Fluids
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 5
SP - 923
EP - 934
AB -
We are interested in a barotropic motion of the non-Newtonian bipolar
fluids .
We consider a special
case where the stress tensor is expressed in the form of
potentials depending on eii and $(\frac{\partial
e_{ij}}{\partial x_{k}})$.
We prove the
asymptotic stability of the rest state under the assumption
of the regularity of the potential forces.
LA - eng
KW - Non-Newtonian compressible fluids; global
existence; uniqueness;
asymptotic stability; the rest state.; non-Newtonian compressible bipolar fluids; barotropic motion; stress tensor; asymptotic stability; regularity
UR - http://eudml.org/doc/197517
ER -
References
top- C. Amrouche and D. Cioranescu, On a class of fluids of grade 3, Laboratoire d'analyse numérique de l'université Pierre et Marie Curie, rapport 88006 (1988).
- C. Amrouche, Sur une classe de fluides non newtoniens : les solutions aqueuses de polymère, Quart. Appl. Math.L(4) (1992) 779-791.
- H. Bellout, F. Bloom and J. Necas, Young measure-valued solutions for non-Newtonian incompressible fluids. Commun. Partial Differential Equations19 (1994) 1763-1803.
- Beirão da Veiga, An Lp - theory for the n-dimensional stationary compressible Navier-Stokes equations and the incompressible limit for compressible fluids. The equilibrium solutions. Comm. Math. Phys.109 (1987) 229-248.
- D. Cioranescu and E.H. Quazar, Existence and uniqueness for fluids of second grade. Collège de France Seminars, Pitman Res. Notes Math. Ser.109 (1984) 178-197.
- E. Feireisl and H. Petzeltová, On the steady state solutions to the Navier-Stokes equations of compressible flow. Manuscripta Math.97 (1998) 109-116.
- E. Feireisl and H. Petzeltová, The zero - velocity limit solutions of the Navier-Stokes equations of compressible fluid revisited, in Proc. of Navier-Stokes equations and the Related Problem, (1999).
- G.P. Galdi, Mathematical theory of second grade fluids, Stability and Wave Propagation in Fluids, G.P. Galdi Ed., CISM Course and Lectures 344, Springer, New York (1995) 66-103.
- G.P. Galdi and A. Sequeira, Further existence results for classical solutions of the equations of a second grade fluid. Arch. Ration. Mech. Anal.28 (1994) 297-321.
- D.D. Joseph, Fluid Dynamics of Viscoelastic Liquids. Springer Verlag, New York (1990)
- J. Málek , J. Necas, M. Rokyta and R. Ruzicka, Weak and Measure-valued solutions to evolutionary partial differential equations. Chapman and Hall (1996).
- A.E. Mamontov, Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity I. Siberian Math. J.40 (1999) 351-362.
- A.E. Mamontov, Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity II. Siberian Math. J.40 (1999) 541-555.
- S Matusu-Necasová and M. Medvi1=d to 1.051d'ová, Bipolar barotropic nonnewtonian fluid. Comment. Math. Univ. Carolin35 (1994) 467-483.
- S. Matusu-Necasová, A. Sequeira and J.H. Videman, Existence of Classical solutions for compressible viscoelastic fluids of Oldroyd type past an obstacle. Math. Methods Appl. Sci.22 (1999) 449-460.
- S. Matusu-Necasová and M. Medvi1=d to 1.051d'ová-Lukácová, Bipolar Isothermal non-Newtonian compressible fluids. J. Math. Anal. Appl.225 (1998) 168-192.
- J. Necas and M. Silhavý, Multipolar viscous fluids. Quart. Appl. Math.XLIX (1991) 247-266.
- J. Necas, A. Novotný and M. Silhavý, Global solutions to the viscous compressible barotropic multipolar gas. Theoret. Comp. Fluid Dynamics4 (1992) 1-11.
- J. Necas, Theory of multipolar viscous fluids, in The Mathematics of Finite Elements and ApplicationsVII MAFELAP 1990, J.R. Whitemann Ed., Academic Press, New York (1991) 233-244.
- J. Neustupa, A semigroup generated by the linearized Navier-Stokes equations for compressible fluid and its uniform growth bound in Hölder spaces, in Proc. of the International Conference on the Navier-Stokes equations, Theory and Numerical Methods, Varenna, June 1997, R. Salvi Ed., Pitman Res. Notes Math. Ser.388 (1998) 86-100.
- J. Neustupa, The global existence of solutions to the equations of motion of a viscous gas with an artificial viscosity. Math. Methods Appl. Sci.14 (1991) 93-119.
- J.G. Oldroyd, On the formulation of rheological equations of state. Proc. Roy. Soc. LondonA200 (1950) 523-541.
- K.R. Rajagopal, Mechanics of non-Newtonian fluids, in Recent Developments in Theoretical Fluid Mechanics Series291, Longman Scientific & Technical Reports (1993).
- M. Renardy, W.J. Hrusa and J.A. Nohel, Mathematical problems in Viscoelasticity, Longman, New York (1987).
- R. Salvi and I. Straskraba, Global existence for viscous compressible fluids and their behaviour as t → ∞. J. Faculty Sci. Univ. Tokyo, Sect. I, A40 (1993) 17-51.
- W.R. Schowalter, Mechanics of Non-Newtonian Fluids. Pergamon Press, New York (1978).
- M.H. Sy, Contributions à l'etude mathématique des problèmes isssus de la mécanique des fluides viscoélastiques. Lois de comportement de type intégral ou différentiel. Thèse d'université de Paris-Sud, Orsay (1996).
- C. Truesdell and W. Noll, The Nonlinear Field Theories of Mechanics, 2nd edn. Springer, Berlin (1992).
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.