Bipolar Barotropic Non-Newtonian Compressible Fluids

Šárka Matušu-Nečasová; Mária Medviďová-Lukáčová

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 34, Issue: 5, page 923-934
  • ISSN: 0764-583X

Abstract

top
We are interested in a barotropic motion of the non-Newtonian bipolar fluids . We consider a special case where the stress tensor is expressed in the form of potentials depending on eii and ( e i j x k ) . We prove the asymptotic stability of the rest state under the assumption of the regularity of the potential forces.

How to cite

top

Matušu-Nečasová, Šárka, and Medviďová-Lukáčová, Mária. "Bipolar Barotropic Non-Newtonian Compressible Fluids." ESAIM: Mathematical Modelling and Numerical Analysis 34.5 (2010): 923-934. <http://eudml.org/doc/197517>.

@article{Matušu2010,
abstract = { We are interested in a barotropic motion of the non-Newtonian bipolar fluids . We consider a special case where the stress tensor is expressed in the form of potentials depending on eii and $(\frac\{\partial e_\{ij\}\}\{\partial x_\{k\}\})$. We prove the asymptotic stability of the rest state under the assumption of the regularity of the potential forces. },
author = {Matušu-Nečasová, Šárka, Medviďová-Lukáčová, Mária},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Non-Newtonian compressible fluids; global existence; uniqueness; asymptotic stability; the rest state.; non-Newtonian compressible bipolar fluids; barotropic motion; stress tensor; asymptotic stability; regularity},
language = {eng},
month = {3},
number = {5},
pages = {923-934},
publisher = {EDP Sciences},
title = {Bipolar Barotropic Non-Newtonian Compressible Fluids},
url = {http://eudml.org/doc/197517},
volume = {34},
year = {2010},
}

TY - JOUR
AU - Matušu-Nečasová, Šárka
AU - Medviďová-Lukáčová, Mária
TI - Bipolar Barotropic Non-Newtonian Compressible Fluids
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 5
SP - 923
EP - 934
AB - We are interested in a barotropic motion of the non-Newtonian bipolar fluids . We consider a special case where the stress tensor is expressed in the form of potentials depending on eii and $(\frac{\partial e_{ij}}{\partial x_{k}})$. We prove the asymptotic stability of the rest state under the assumption of the regularity of the potential forces.
LA - eng
KW - Non-Newtonian compressible fluids; global existence; uniqueness; asymptotic stability; the rest state.; non-Newtonian compressible bipolar fluids; barotropic motion; stress tensor; asymptotic stability; regularity
UR - http://eudml.org/doc/197517
ER -

References

top
  1. C. Amrouche and D. Cioranescu, On a class of fluids of grade 3, Laboratoire d'analyse numérique de l'université Pierre et Marie Curie, rapport 88006 (1988).  
  2. C. Amrouche, Sur une classe de fluides non newtoniens : les solutions aqueuses de polymère, Quart. Appl. Math.L(4) (1992) 779-791.  Zbl0765.76002
  3. H. Bellout, F. Bloom and J. Necas, Young measure-valued solutions for non-Newtonian incompressible fluids. Commun. Partial Differential Equations19 (1994) 1763-1803.  Zbl0840.35079
  4. Beirão da Veiga, An Lp - theory for the n-dimensional stationary compressible Navier-Stokes equations and the incompressible limit for compressible fluids. The equilibrium solutions. Comm. Math. Phys.109 (1987) 229-248.  Zbl0621.76074
  5. D. Cioranescu and E.H. Quazar, Existence and uniqueness for fluids of second grade. Collège de France Seminars, Pitman Res. Notes Math. Ser.109 (1984) 178-197.  
  6. E. Feireisl and H. Petzeltová, On the steady state solutions to the Navier-Stokes equations of compressible flow. Manuscripta Math.97 (1998) 109-116.  Zbl0910.35097
  7. E. Feireisl and H. Petzeltová, The zero - velocity limit solutions of the Navier-Stokes equations of compressible fluid revisited, in Proc. of Navier-Stokes equations and the Related Problem, (1999).  Zbl0946.35058
  8. G.P. Galdi, Mathematical theory of second grade fluids, Stability and Wave Propagation in Fluids, G.P. Galdi Ed., CISM Course and Lectures 344, Springer, New York (1995) 66-103.  
  9. G.P. Galdi and A. Sequeira, Further existence results for classical solutions of the equations of a second grade fluid. Arch. Ration. Mech. Anal.28 (1994) 297-321.  Zbl0833.76005
  10. D.D. Joseph, Fluid Dynamics of Viscoelastic Liquids. Springer Verlag, New York (1990)  Zbl0698.76002
  11. J. Málek , J. Necas, M. Rokyta and R. Ruzicka, Weak and Measure-valued solutions to evolutionary partial differential equations. Chapman and Hall (1996).  Zbl0851.35002
  12. A.E. Mamontov, Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity I. Siberian Math. J.40 (1999) 351-362.  Zbl0938.35121
  13. A.E. Mamontov, Global solvability of the multidimensional Navier-Stokes equations of a compressible fluid with nonlinear viscosity II. Siberian Math. J.40 (1999) 541-555.  
  14. S Matusu-Necasová and M. Medvi1=d to 1.051d'ová, Bipolar barotropic nonnewtonian fluid. Comment. Math. Univ. Carolin35 (1994) 467-483.  
  15. S. Matusu-Necasová, A. Sequeira and J.H. Videman, Existence of Classical solutions for compressible viscoelastic fluids of Oldroyd type past an obstacle. Math. Methods Appl. Sci.22 (1999) 449-460.  Zbl0916.76004
  16. S. Matusu-Necasová and M. Medvi1=d to 1.051d'ová-Lukácová, Bipolar Isothermal non-Newtonian compressible fluids. J. Math. Anal. Appl.225 (1998) 168-192.  
  17. J. Necas and M. Silhavý, Multipolar viscous fluids. Quart. Appl. Math.XLIX (1991) 247-266.  Zbl0732.76003
  18. J. Necas, A. Novotný and M. Silhavý, Global solutions to the viscous compressible barotropic multipolar gas. Theoret. Comp. Fluid Dynamics4 (1992) 1-11.  Zbl0761.76006
  19. J. Necas, Theory of multipolar viscous fluids, in The Mathematics of Finite Elements and ApplicationsVII MAFELAP 1990, J.R. Whitemann Ed., Academic Press, New York (1991) 233-244.  
  20. J. Neustupa, A semigroup generated by the linearized Navier-Stokes equations for compressible fluid and its uniform growth bound in Hölder spaces, in Proc. of the International Conference on the Navier-Stokes equations, Theory and Numerical Methods, Varenna, June 1997, R. Salvi Ed., Pitman Res. Notes Math. Ser.388 (1998) 86-100.  Zbl0954.35130
  21. J. Neustupa, The global existence of solutions to the equations of motion of a viscous gas with an artificial viscosity. Math. Methods Appl. Sci.14 (1991) 93-119.  Zbl0724.76073
  22. J.G. Oldroyd, On the formulation of rheological equations of state. Proc. Roy. Soc. LondonA200 (1950) 523-541.  Zbl1157.76305
  23. K.R. Rajagopal, Mechanics of non-Newtonian fluids, in Recent Developments in Theoretical Fluid Mechanics Series291, Longman Scientific & Technical Reports (1993).  
  24. M. Renardy, W.J. Hrusa and J.A. Nohel, Mathematical problems in Viscoelasticity, Longman, New York (1987).  Zbl0719.73013
  25. R. Salvi and I. Straskraba, Global existence for viscous compressible fluids and their behaviour as t → ∞. J. Faculty Sci. Univ. Tokyo, Sect. I, A40 (1993) 17-51.  Zbl0785.35074
  26. W.R. Schowalter, Mechanics of Non-Newtonian Fluids. Pergamon Press, New York (1978).  
  27. M.H. Sy, Contributions à l'etude mathématique des problèmes isssus de la mécanique des fluides viscoélastiques. Lois de comportement de type intégral ou différentiel. Thèse d'université de Paris-Sud, Orsay (1996).  
  28. C. Truesdell and W. Noll, The Nonlinear Field Theories of Mechanics, 2nd edn. Springer, Berlin (1992).  Zbl0779.73004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.