Around 3D Boltzmann non linear operator without angular cutoff, a new formulation

Radjesvarane Alexandre

ESAIM: Mathematical Modelling and Numerical Analysis (2010)

  • Volume: 34, Issue: 3, page 575-590
  • ISSN: 0764-583X

Abstract

top
We propose a new formulation of the 3D Boltzmann non linear operator, without assuming Grad's angular cutoff hypothesis, and for intermolecular laws behaving as 1/rs, with s> 2. It involves natural pseudo differential operators, under a form which is analogous to the Landau operator. It may be used in the study of the associated equations, and more precisely in the non homogeneous framework.

How to cite

top

Alexandre, Radjesvarane. "Around 3D Boltzmann non linear operator without angular cutoff, a new formulation." ESAIM: Mathematical Modelling and Numerical Analysis 34.3 (2010): 575-590. <http://eudml.org/doc/197539>.

@article{Alexandre2010,
abstract = { We propose a new formulation of the 3D Boltzmann non linear operator, without assuming Grad's angular cutoff hypothesis, and for intermolecular laws behaving as 1/rs, with s> 2. It involves natural pseudo differential operators, under a form which is analogous to the Landau operator. It may be used in the study of the associated equations, and more precisely in the non homogeneous framework. },
author = {Alexandre, Radjesvarane},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Boltzmann operator; ellipticity; non angular cutoff; pseudo differential operators.; non-cutoff Boltzmann collision operator; Boltzmann-Coulomb operator; pseudodifferential operators},
language = {eng},
month = {3},
number = {3},
pages = {575-590},
publisher = {EDP Sciences},
title = {Around 3D Boltzmann non linear operator without angular cutoff, a new formulation},
url = {http://eudml.org/doc/197539},
volume = {34},
year = {2010},
}

TY - JOUR
AU - Alexandre, Radjesvarane
TI - Around 3D Boltzmann non linear operator without angular cutoff, a new formulation
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 3
SP - 575
EP - 590
AB - We propose a new formulation of the 3D Boltzmann non linear operator, without assuming Grad's angular cutoff hypothesis, and for intermolecular laws behaving as 1/rs, with s> 2. It involves natural pseudo differential operators, under a form which is analogous to the Landau operator. It may be used in the study of the associated equations, and more precisely in the non homogeneous framework.
LA - eng
KW - Boltzmann operator; ellipticity; non angular cutoff; pseudo differential operators.; non-cutoff Boltzmann collision operator; Boltzmann-Coulomb operator; pseudodifferential operators
UR - http://eudml.org/doc/197539
ER -

References

top
  1. R. Alexandre, Sur l'opérateur de Boltzmann linéaire 3D sans troncature angulaire. Note C.R. Acad. Sci. Paris Sér. I 325 (1997) 959-962.  
  2. R. Alexandre, Remarks on 3D Boltzmann linear equation without cutoff. Trans. Theory and Stat. Phys.28 (1999) 433-473.  
  3. R. Alexandre, Sur l'opérateur de Boltzmann non linéaire 3D sans troncature angulaire. Note C.R. Acad. Sci. Paris Sér. I 326 (1998) 165-168.  
  4. R. Alexandre, Sur le taux de dissipation d'entropie sans troncature angulaire. Note C.R. Acad. Sci. Paris Sér. I (1998) 311-315.  
  5. R. Alexandre, Une définition des solutions renormalisées pour l'équation de Boltzmann. Note C.R. Acad. Sci. Paris Sér. I 328 (1999) 987-991.  
  6. R. Alexandre, The linearised Boltzmann operator and applications. In preparation.  
  7. R. Alexandre, Solutions Maxwelliennes pour l'équation de Boltzmann sans troncature angulaire. Note submitted to C.R. Acad. Sci. Paris Sér. I (to appear).  
  8. R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long range interactions. Arch. Rat. Mech. Anal. (to appear).  
  9. R. Alexandre, C. Villani, On the Boltzmann equation for long-range interactions and the Landau approximation in plasma physics. (Preprints ENS Ulm DMA-99-22, 1999).  
  10. L. Arkeryd, On the Boltzmann equation. Arch. Rat. Mech. Anal.45 (1972) 1-34.  
  11. L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation. Arch. Rat. Mech. Anal.77 (1981) 11-21.  
  12. R. Balescu, Statistical Mechanics of charged particles. Wiley Interscience, N.Y, USA (1963).  
  13. T. Carleman, Problèmes Mathématiques dans la Théorie cinétique des Gaz. Almquist and Wiksell, Uppsala (1957)  
  14. C. Cercignani, Mathematical Methods in Kinetic Theory. 2nd Ed. Plenum (1990).  
  15. C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases. Series in Appl. Sci. 106, Springer Verlag, New York (1994).  
  16. P. Degond and B. Lucquin, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case. Math. Models Methods Appl. Sci.2-2 (1992) 167-182.  
  17. L. Desvillettes, Regularisation properties of the 2D homogeneous Boltzmann equation. Transport Theory Statist. Phys.26 (1997) 341-357.  
  18. L. Desvillettes, Regularisation for the non-cutoff 2D radially symmetric Boltzmann equation. Transport Theory Statist. Phys.25 (1996) 383-394.  
  19. L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing. Transport Theory Stat. Phys.21 (1992) 259-276.  
  20. L. Desvillettes and B. Wennberg, work in preparation.  
  21. R.J. DiPerna and P.L. Lions, On the Cauchy problem for Boltzmann equation; Global existence and weak stability. Ann. Maths. 130 (1989) 321-366.  
  22. R.J. DiPerna and P.L. Lions, Global weak solutions of kinetic equations. Sem. Mat. Torino46 (1988) 259-288.  
  23. T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics. J. Stat. Phys. 89 (1997) 751-776 .  
  24. P.L. Lions, Compactness in Boltzmann's equation, via FIO and applic. J. Math. Kyoto Univ. 34 (1994) Part I 391-427; Part II 429-461, Part III 539-584.  
  25. P.L. Lions, On Boltzmann and Landau equations. Phil. Trans. Roy. Soc. London A-346 (1994) 191-204.  
  26. P.L. Lions, Regularity and compactness for Boltzmann collision operators without angular cutoff. Note C.R. Acad. Sci. Paris Sér. I326 (1998) 37-41.  
  27. Y.P. Pao, Boltzmann Collision Operator with Inverse power Intermolecular potentials. C.P.A.M 27 ( 1974) Part I 407-428; Part II 559-581.  
  28. M.E. Taylor, Pseudo-Differential Operators. Princeton Univ. Press (1981).  
  29. M.E. Taylor, Pdo and non linear PDE, Birkhauser, Boston (1991).  
  30. C. Villani, Contributions à l'étude mathématique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasma, Thèse Université Paris-Dauphine (1998).  
  31. C. Villani, Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off. Rev. Mat. Iberoam. (to appear).  
  32. C. Villani, Conservative forms of Boltzmann's collision operator: Landau revisited. Math. Mod. Num. An. (1998).  
  33. S. Ukai, Solutions of the Boltzmann equation. In: Patterns and Waves, North-Holland (1985).  
  34. B. Wennberg, Regularity in the Boltzmann equation and the Radon transform. CPDE 19, (1994) 2057-2074.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.