Around 3D Boltzmann non linear operator without angular cutoff, a new formulation
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 34, Issue: 3, page 575-590
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topAlexandre, Radjesvarane. "Around 3D Boltzmann non linear operator without angular cutoff, a new formulation." ESAIM: Mathematical Modelling and Numerical Analysis 34.3 (2010): 575-590. <http://eudml.org/doc/197539>.
@article{Alexandre2010,
abstract = {
We propose a new formulation of the 3D Boltzmann
non linear operator, without assuming Grad's angular cutoff
hypothesis, and
for intermolecular laws behaving as 1/rs, with s> 2. It involves
natural pseudo differential operators, under a form which is analogous
to the Landau operator. It may be used in the study of the
associated equations, and more precisely in the non homogeneous
framework.
},
author = {Alexandre, Radjesvarane},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Boltzmann operator; ellipticity; non
angular cutoff; pseudo differential operators.; non-cutoff Boltzmann collision operator; Boltzmann-Coulomb operator; pseudodifferential operators},
language = {eng},
month = {3},
number = {3},
pages = {575-590},
publisher = {EDP Sciences},
title = {Around 3D Boltzmann non linear operator without angular cutoff, a new formulation},
url = {http://eudml.org/doc/197539},
volume = {34},
year = {2010},
}
TY - JOUR
AU - Alexandre, Radjesvarane
TI - Around 3D Boltzmann non linear operator without angular cutoff, a new formulation
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 3
SP - 575
EP - 590
AB -
We propose a new formulation of the 3D Boltzmann
non linear operator, without assuming Grad's angular cutoff
hypothesis, and
for intermolecular laws behaving as 1/rs, with s> 2. It involves
natural pseudo differential operators, under a form which is analogous
to the Landau operator. It may be used in the study of the
associated equations, and more precisely in the non homogeneous
framework.
LA - eng
KW - Boltzmann operator; ellipticity; non
angular cutoff; pseudo differential operators.; non-cutoff Boltzmann collision operator; Boltzmann-Coulomb operator; pseudodifferential operators
UR - http://eudml.org/doc/197539
ER -
References
top- R. Alexandre, Sur l'opérateur de Boltzmann linéaire 3D sans troncature angulaire. Note C.R. Acad. Sci. Paris Sér. I 325 (1997) 959-962.
- R. Alexandre, Remarks on 3D Boltzmann linear equation without cutoff. Trans. Theory and Stat. Phys.28 (1999) 433-473.
- R. Alexandre, Sur l'opérateur de Boltzmann non linéaire 3D sans troncature angulaire. Note C.R. Acad. Sci. Paris Sér. I 326 (1998) 165-168.
- R. Alexandre, Sur le taux de dissipation d'entropie sans troncature angulaire. Note C.R. Acad. Sci. Paris Sér. I (1998) 311-315.
- R. Alexandre, Une définition des solutions renormalisées pour l'équation de Boltzmann. Note C.R. Acad. Sci. Paris Sér. I 328 (1999) 987-991.
- R. Alexandre, The linearised Boltzmann operator and applications. In preparation.
- R. Alexandre, Solutions Maxwelliennes pour l'équation de Boltzmann sans troncature angulaire. Note submitted to C.R. Acad. Sci. Paris Sér. I (to appear).
- R. Alexandre, L. Desvillettes, C. Villani and B. Wennberg, Entropy dissipation and long range interactions. Arch. Rat. Mech. Anal. (to appear).
- R. Alexandre, C. Villani, On the Boltzmann equation for long-range interactions and the Landau approximation in plasma physics. (Preprints ENS Ulm DMA-99-22, 1999).
- L. Arkeryd, On the Boltzmann equation. Arch. Rat. Mech. Anal.45 (1972) 1-34.
- L. Arkeryd, Intermolecular forces of infinite range and the Boltzmann equation. Arch. Rat. Mech. Anal.77 (1981) 11-21.
- R. Balescu, Statistical Mechanics of charged particles. Wiley Interscience, N.Y, USA (1963).
- T. Carleman, Problèmes Mathématiques dans la Théorie cinétique des Gaz. Almquist and Wiksell, Uppsala (1957)
- C. Cercignani, Mathematical Methods in Kinetic Theory. 2nd Ed. Plenum (1990).
- C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases. Series in Appl. Sci. 106, Springer Verlag, New York (1994).
- P. Degond and B. Lucquin, The Fokker-Planck asymptotics of the Boltzmann collision operator in the Coulomb case. Math. Models Methods Appl. Sci.2-2 (1992) 167-182.
- L. Desvillettes, Regularisation properties of the 2D homogeneous Boltzmann equation. Transport Theory Statist. Phys.26 (1997) 341-357.
- L. Desvillettes, Regularisation for the non-cutoff 2D radially symmetric Boltzmann equation. Transport Theory Statist. Phys.25 (1996) 383-394.
- L. Desvillettes, On asymptotics of the Boltzmann equation when the collisions become grazing. Transport Theory Stat. Phys.21 (1992) 259-276.
- L. Desvillettes and B. Wennberg, work in preparation.
- R.J. DiPerna and P.L. Lions, On the Cauchy problem for Boltzmann equation; Global existence and weak stability. Ann. Maths. 130 (1989) 321-366.
- R.J. DiPerna and P.L. Lions, Global weak solutions of kinetic equations. Sem. Mat. Torino46 (1988) 259-288.
- T. Goudon, On Boltzmann equations and Fokker-Planck asymptotics. J. Stat. Phys. 89 (1997) 751-776 .
- P.L. Lions, Compactness in Boltzmann's equation, via FIO and applic. J. Math. Kyoto Univ. 34 (1994) Part I 391-427; Part II 429-461, Part III 539-584.
- P.L. Lions, On Boltzmann and Landau equations. Phil. Trans. Roy. Soc. London A-346 (1994) 191-204.
- P.L. Lions, Regularity and compactness for Boltzmann collision operators without angular cutoff. Note C.R. Acad. Sci. Paris Sér. I326 (1998) 37-41.
- Y.P. Pao, Boltzmann Collision Operator with Inverse power Intermolecular potentials. C.P.A.M 27 ( 1974) Part I 407-428; Part II 559-581.
- M.E. Taylor, Pseudo-Differential Operators. Princeton Univ. Press (1981).
- M.E. Taylor, Pdo and non linear PDE, Birkhauser, Boston (1991).
- C. Villani, Contributions à l'étude mathématique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasma, Thèse Université Paris-Dauphine (1998).
- C. Villani, Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation without cut-off. Rev. Mat. Iberoam. (to appear).
- C. Villani, Conservative forms of Boltzmann's collision operator: Landau revisited. Math. Mod. Num. An. (1998).
- S. Ukai, Solutions of the Boltzmann equation. In: Patterns and Waves, North-Holland (1985).
- B. Wennberg, Regularity in the Boltzmann equation and the Radon transform. CPDE 19, (1994) 2057-2074.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.