On a model system for the oblique interaction of internal gravity waves
Jean-Claude Saut; Nikolay Tzvetkov
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 34, Issue: 2, page 501-523
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topSaut, Jean-Claude, and Tzvetkov, Nikolay. "On a model system for the oblique interaction of internal gravity waves." ESAIM: Mathematical Modelling and Numerical Analysis 34.2 (2010): 501-523. <http://eudml.org/doc/197558>.
@article{Saut2010,
abstract = {
We give local and global well-posedness results for a system of two
Kadomtsev-Petviashvili (KP) equations derived by R. Grimshaw and Y. Zhu
to model the oblique interaction of weakly nonlinear, two dimensional,
long internal waves in shallow fluids.
We also prove a smoothing effect for the amplitudes of the interacting waves.
We use the Fourier transform restriction norms introduced by J. Bourgain
and the Strichartz estimates for the linear KP group. Finally
we extend the result of [3] for lower order perturbation
of the system in the absence of transverse effects.
},
author = {Saut, Jean-Claude, Tzvetkov, Nikolay},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Internal gravity waves; Kadomtsev-Petviashvili equations; Cauchy problem.; oblique interaction of nonlinear internal waves; global well-posedness; smoothing effect; Fourier transform; Strichartz estimates; lower-order perturbation},
language = {eng},
month = {3},
number = {2},
pages = {501-523},
publisher = {EDP Sciences},
title = {On a model system for the oblique interaction of internal gravity waves},
url = {http://eudml.org/doc/197558},
volume = {34},
year = {2010},
}
TY - JOUR
AU - Saut, Jean-Claude
AU - Tzvetkov, Nikolay
TI - On a model system for the oblique interaction of internal gravity waves
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 2
SP - 501
EP - 523
AB -
We give local and global well-posedness results for a system of two
Kadomtsev-Petviashvili (KP) equations derived by R. Grimshaw and Y. Zhu
to model the oblique interaction of weakly nonlinear, two dimensional,
long internal waves in shallow fluids.
We also prove a smoothing effect for the amplitudes of the interacting waves.
We use the Fourier transform restriction norms introduced by J. Bourgain
and the Strichartz estimates for the linear KP group. Finally
we extend the result of [3] for lower order perturbation
of the system in the absence of transverse effects.
LA - eng
KW - Internal gravity waves; Kadomtsev-Petviashvili equations; Cauchy problem.; oblique interaction of nonlinear internal waves; global well-posedness; smoothing effect; Fourier transform; Strichartz estimates; lower-order perturbation
UR - http://eudml.org/doc/197558
ER -
References
top- J. Albert, J. Bona and J.C. Saut, Model equations for waves in stratified fluids. Proc. Roy. Soc. Lond. A453 (1997) 1213-1260.
- S. Alinhac and P. Gérard, Opérateurs pseudo-différentiel et théorème de Nash-Moser. Éditions du CNRS, EDP Sciences (1991).
- J.M. Ash, J. Cohen and G. Wang, On strongly interacting internal solitary waves. J. Fourier Anal. and Appl.5 (1996) 507-517.
- J. Bona, G. Ponce, J.C. Saut and M. Tom, A model system for strong interaction between internal solitary waves. Comm. Math. Phys.143 (1992) 287-313.
- J.-M. Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Annales de l'ENS14 (1981) 209-246.
- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations I. Schrödinger equations. GAFA3 (1993) 107-156.
- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations II. The KdV equation. GAFA3 (1993) 209-262.
- J. Bourgain, On the Cauchy problem for the Kadomtsev-Petviashvili equation. GAFA3 (1993) 315-341.
- J.-Y. Chemin, Fluid parfaits incompressibles. Astérisque 230 (1995).
- R. Coifman and Y. Meyer, Au delà des operateurs pseudodifférentiels. Astérisque 57 (1978).
- I. Gallagher, Applications of Schochet's methods to parabolic equations. J. Math. Pures Appl.77 (1998) 989-1054.
- J.A. Gear and R. Grimshaw, Weak and strong interactions between internal solitary waves. Stud. Appl. Math.65 (1984) 235-258.
- J. Ginibre, Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d'espace (d'après Bourgain). Séminaire Bourbaki 796, Astérique 237 (1995) 163-187.
- J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system. J. Funct. Anal.151 (1997) 384-436.
- R. Grimshaw, Y. Zhu, Oblique interactions between internal solitary waves.Stud. Appl. Math. 92 (1994) 249-270.
- D. Iftimie, The resolution of the Navier-Stokes equations in anisotropic spaces. Revista Matematica Ibero-Americana15 (1999) 1-36.
- R.J. Iório Jr, W.V.L. Nunes, On equations of KP-type. Proc. Roy. Soc. Edinburgh A128 (1998) 725-743.
- P. Isaza, J. Mejia and V. Stallbohm, El problema de Cauchy para la ecuacion de Kadomtsev-Petviashvili (KP-II) en espacios de Sobolev Hs, s>0, preprint (1997).
- F. Linares, L2 global well-posedness of the initial value problem associated to the Benjamin equation. J. Differential Equations152 (1999) 377-393.
- C. Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equations. J. AMS9 (1996) 573-603.
- C. Kenig, G. Ponce and L. Vega, Quadratic forms for 1-D semilinear Schrödinger equation. Trans. Amer. Math. Soc.348 (1996) 3323-3353.
- J.C. Saut, Remarks on the generalized Kadomtsev-Petviashvili equations. Indiana Univ. Math. J.42 (1993) 1017-1029.
- R. Strichartz, Restriction of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J.44 (1977) 705-714.
- H. Takaoka, Well-posedness for the Kadomtsev-Petviashvili II equation, preprint (1998).
- N. Tzvetkov, Global low regularity solutions for Kadomtsev-Petviashvili equation. Diff. Int. Eq. (to appear).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.