On the Computation of Roll Waves
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 35, Issue: 3, page 463-480
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Bernudez and M.E. Vazquez, Upwind methods for hyperbolic conservation laws with source terms. Comput. Fluids23 (1994) 1049-1071.
- R. Botchorishvili, B. Perthame and A. Vasseur, Equilibrium schemes for scalar conservation laws with stiff sources. Math. Comp. (to appear).
- A. Chinnayya and A.Y. Le Roux, A new general Riemann solver for the shallow-water equations with friction and topography. Preprint (1999).
- V. Cornish, Ocean waves and kindred geophysical phenomena. Cambridge University Press, London (1934).
- C.M. Dafermos, Hyperbolic conservation laws in continuum physics. Grundlehren der Mathematischen Wissenschaften325, Springer-Verlag, Berlin (2000) xvi+443 pp.
- R.F. Dressler, Mathematical solution of the problem of roll-waves in inclined open channels. Comm. Pure Appl. Math.2 (1949) 149-194.
- T. Gallouët, J.-M. Hérard and N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography. AIAA-2001 (to appear).
- J. Goodman, Stability of the Kuramoto-Sivashinsky and related systems. Comm. Pure Appl. Math.47 (1994) 293-306.
- L. Gosse, A well-balanced flux-vector splitting scheme desinged for hyperbolic systems of conservation laws with source terms. Comp. Math. Appl.39 (2000) 135-159.
- J.M. Greenberg and A.-Y. Le Roux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal.33 (1996) 1-16.
- J.K. Hunter, Asymptotic equations for nonlinear hyperbolic waves, in Surveys in Appl. Math. Vol. 2, J.B. Keller, G. Papanicolaou, D.W. McLaughlin, Eds. (1993).
- H. Jeffreys, The flow of water in an inclined channel of rectangular section. Phil. Mag.49 (1925) 793-807.
- S. Jin, A steady-state capturing method for hyperbolic systems with source terms. ESAIM: M2AN (to appear).
- S. Jin and M. Katsoulakis, Hyperbolic systems with supercharacteristic relaxations and roll waves. SIAM J. Appl. Math.61 (2000) 271-292 (electronic).
- Y.J. Kim and A.E. Tzavaras, Diffusive N-waves and metastability in Burgers equation. Preprint.
- C. Kranenburg, On the evolution of roll waves. J. Fluid Mech.245 (1992) 249-261.
- P.D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves. CBMS-NSF Regional Conference Series Appl. Math.11, Philadelphia (1973).
- R. LeVeque, Numerical methods for conservation laws. Lect. Math., ETH Zurich, Birkhauser (1992).
- R.J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comp. Phys.146 (1998) 346-365.
- T.P. Liu, Nonlinear stability of shock waves for viscous conservation laws. Memoirs of the AMS56 (1985).
- A.N. Lyberopoulos, Asymptotic oscillations of solutions of scalar conservation laws with convexity under the action of a linear excitation. Quart. Appl. Math.XLVIII (1990) 755-765.
- D.J. Needham and J.H. Merkin, On roll waves down an open inclined channel. Proc. Roy. Soc. Lond. A394 (1984) 259-278.
- O.B. Novik, Model description of roll-waves. J. Appl. Math. Mech.35 (1971) 938-951.
- P.L. Roe, Upwind differenced schemes for hyperbolic conservation laws with source terms. Lect. Notes Math.1270, Springer, New York (1986) 41-51.
- J.J. Stoker, Water Waves. John Wiley and Sons, New York (1958).
- J. Whitham, Linear and nonlinear waves. Wiley, New York (1974).