A steady-state capturing method for hyperbolic systems with geometrical source terms
ESAIM: Mathematical Modelling and Numerical Analysis (2010)
- Volume: 35, Issue: 4, page 631-645
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- A. Bernudez and M.E. Vazquez, Upwind methods for hyperbolic conservation laws with source terms. Comput. & Fluids23 (1994) 1049-1071.
- R. Botchorishvili, B. Perthame and A. Vasseur, Equilibrium schemes for scalar conservation laws with stiff sources. Math. Comp. (to appear).
- A. Chinnayya and A.Y. Le Roux, A new general Riemann solver for the shallow-water equations with friction and topography. Preprint (1999).
- T. Gallouët, J.-M. Hérard and N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography. AIAA J. (to appear 2001).
- S.K. Godunov, Finite difference schemes for numerical computation of solutions of the equations of fluid dynamics. Math. USSR-Sb.47 (1959) 271-306.
- L. Gosse, A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Comput. Math. Appl.39 (2000) 135-159.
- L. Gosse, A well-balanced scheme using non-conservative products designed for hyperbolic systems of conservation laws with source terms. M 3AS (to appear).
- L. Gosse and A.-Y. Le Roux, A well-balanced scheme designed for inhomogeneous scalar conservation laws. C. R. Acad. Sci. Paris Sér. I Math.323 (1996). 543-546
- J.M. Greenberg and A.-Y. Le Roux, A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. Anal.33 1-16 1996.
- J.M. Greenberg, A.-Y. Le Roux, R. Baraille and A. Noussair, Analysis and approximation of conservation laws with source terms. SIAM J. Numer. Anal.34 (1997) 1980-2007.
- S. Jin and M. Katsoulakis, Hyperbolic systems with supercharacteristic relaxations and roll waves. SIAM J. Appl. Math.61 (2000) 271-292 (electronic).
- S. Jin and Y.J. Kim, On the computation of roll waves. ESAIM: M2AN 35 (2001) 463-480.
- C. Kranenburg, On the evolution of roll waves. J. Fluid Mech.245 (1992) 249-261.
- R.J. LeVeque, Numerical methods for conservation laws. Birkhäuser, Basel (1992).
- R.J. LeVeque, Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm. J. Comput. Phys.146 (1998) 346-365.
- P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys.43 (1981) 357-372.
- P.L. Roe, Upwind differenced schemes for hyperbolic conservation laws with source terms, in Nonlinear Hyperbolic Problems, Proc. Adv. Res. Workshop, St. Étienne, 1986, Lect. Notes Math. Springer, Berlin, 1270 (1987) 41-45.
- M.E. Vazquez-Cendon, Improved treatment of source terms in upwind schemes for shallow water equations in channels with irregular geometry. J. Comput. Phys.148 (1999) 497-526.
Citations in EuDML Documents
top- Emmanuel Audusse, Marie-Odile Bristeau, Transport of pollutant in shallow water : a two time steps kinetic method
- Emmanuel Audusse, Marie-Odile Bristeau, Transport of Pollutant in Shallow Water A Two Time Steps Kinetic Method
- Steve Bryson, Yekaterina Epshteyn, Alexander Kurganov, Guergana Petrova, Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system
- Tomás Chacón Rebollo, Antonio Domínguez Delgado, Enrique D. Fernández Nieto, An entropy-correction free solver for non-homogeneous shallow water equations
- Stefania Ferrari, Fausto Saleri, A new two-dimensional shallow water model including pressure effects and slow varying bottom topography
- Tomás Chacón Rebollo, Antonio Domínguez Delgado, Enrique D. Fernández Nieto, An entropy-correction free solver for non-homogeneous shallow water equations
- Stefania Ferrari, Fausto Saleri, A new two-dimensional Shallow Water model including pressure effects and slow varying bottom topography
- Steve Bryson, Yekaterina Epshteyn, Alexander Kurganov, Guergana Petrova, Well-balanced positivity preserving central-upwind scheme on triangular grids for the Saint-Venant system
- Alexander Kurganov, Doron Levy, Central-upwind schemes for the Saint-Venant system
- Alexander Kurganov, Doron Levy, Central-Upwind Schemes for the Saint-Venant System