# Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies

Mathematical Modelling of Natural Phenomena (2010)

- Volume: 5, Issue: 4, page 54-72
- ISSN: 0973-5348

## Access Full Article

top## Abstract

top## How to cite

topChen, Thomas, and Pavlović, Nataša. "Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies." Mathematical Modelling of Natural Phenomena 5.4 (2010): 54-72. <http://eudml.org/doc/197630>.

@article{Chen2010,

abstract = {In this paper, we review some of our recent results in the study of the dynamics of
interacting Bose gases in the Gross-Pitaevskii (GP) limit. Our investigations focus on the
well-posedness of the associated Cauchy problem for the infinite particle system described
by the GP hierarchy.},

author = {Chen, Thomas, Pavlović, Nataša},

journal = {Mathematical Modelling of Natural Phenomena},

keywords = {Bose gas; Gross-Pitaevskii limit; BBGKY hierarchy; nonlinear Schrödinger equations; mean field limit},

language = {eng},

month = {5},

number = {4},

pages = {54-72},

publisher = {EDP Sciences},

title = {Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies},

url = {http://eudml.org/doc/197630},

volume = {5},

year = {2010},

}

TY - JOUR

AU - Chen, Thomas

AU - Pavlović, Nataša

TI - Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies

JO - Mathematical Modelling of Natural Phenomena

DA - 2010/5//

PB - EDP Sciences

VL - 5

IS - 4

SP - 54

EP - 72

AB - In this paper, we review some of our recent results in the study of the dynamics of
interacting Bose gases in the Gross-Pitaevskii (GP) limit. Our investigations focus on the
well-posedness of the associated Cauchy problem for the infinite particle system described
by the GP hierarchy.

LA - eng

KW - Bose gas; Gross-Pitaevskii limit; BBGKY hierarchy; nonlinear Schrödinger equations; mean field limit

UR - http://eudml.org/doc/197630

ER -

## References

top- R. Adami, G. Golse, A. Teta. Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys., 127 (2007), No. 6, 1194–1220. Zbl1118.81021
- M. Aizenman, E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason. Bose-Einstein Quantum Phase Transition in an Optical Lattice Model. Phys. Rev. A, 70 (2004), 023612. Zbl1170.82325
- I. Anapolitanos, I.M. Sigal. The Hartree-von Neumann limit of many body dynamics. Preprint . URIhttp://arxiv.org/abs/0904.4514
- V. Bach, T. Chen, J. Fröhlich and I.M. Sigal. Smooth Feshbach map and operator-theoretic renormalization group methods. J. Funct. Anal., 203 (2003), No. 1, 44-92. Zbl1060.47028
- T. Cazenave. Semilinear Schrödinger equations. Courant lecture notes, 10 (2003), Amer. Math. Soc.. Zbl1055.35003
- T. Chen, N. Pavlović. The quintic NLS as the mean field limit of a Boson gas with three-body interactions. J. Functional Analysis, conditionally accepted. Preprint . Zbl1213.35368URIhttp://arxiv.org/abs/0812.2740
- T. Chen, N. Pavlović. On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies. Discr. Contin. Dyn. Syst., 27 (2010), No. 2, 715 - 739. Zbl1190.35207
- T. Chen, N. Pavlović. A short proof of local wellposedness for focusing and defocusing Gross-Pitaevskii hierarchies. Preprint . Zbl1260.35197URIhttp://arxiv.org/abs/0906.3277
- T. Chen, N. Pavlović. Higher order energy conservation, Gagliardo-Nirenberg-Sobolev inequalities, and global well-posedness for Gross-Pitaevskii hierarchies. Preprint . Zbl1301.35146URIhttp://arxiv.org/abs/0906.2984
- T. Chen, N. Pavlović, N. Tzirakis. Energy conservation and blowup of solutions for focusing GP hierarchies. Preprint . Zbl1200.35253URIhttp://arXiv.org/abs/0905.2704
- A. Elgart, L. Erdös, B. Schlein, H.-T. Yau. Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons. Arch. Rat. Mech. Anal., 179 (2006), No. 2, 265–283. Zbl1086.81035
- L. Erdös, B. Schlein, H.-T. Yau. Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate. Comm. Pure Appl. Math., 59 (2006), No. 12, 1659–1741. Zbl1122.82018
- L. Erdös, B. Schlein, H.-T. Yau. Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math., 167 (2007), 515–614. Zbl1123.35066
- L. Erdös, H.-T. Yau. Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys., 5 (2001), No. 6, 1169–1205. Zbl1014.81063
- J. Fröhlich, S. Graffi, S. Schwarz. Mean-field- and classical limit of many-body Schrödinger dynamics for bosons. Comm. Math. Phys., 271 (2007), no. 3, 681–697. Zbl1172.82011
- J. Fröhlich, A. Knowles, A. Pizzo. Atomism and quantization. J. Phys. A, 40 (2007), No. 12, 3033–3045. Zbl1115.81071
- J. Fröhlich, A. Knowles, S. Schwarz. On the Mean-Field Limit of Bosons with Coulomb Two-Body Interaction. Preprint arXiv:0805.4299. Zbl1177.82016
- M. Grillakis, M. Machedon, A. Margetis. Second-order corrections to mean field evolution for weakly interacting Bosons I. Preprint . Zbl1208.82030URIhttp://arxiv.org/abs/0904.0158
- M. Grillakis, A. Margetis. A priori estimates for many-body Hamiltonian evolution of interacting boson system. J. Hyperbolic Differ. Equ., 5 (2008), No. 4, 857–883. Zbl1160.35357
- K. Hepp. The classical limit for quantum mechanical correlation functions. Comm. Math. Phys., 35 (1974), 265–277.
- S. Klainerman, M. Machedon. On the uniqueness of solutions to the Gross-Pitaevskii hierarchy. Commun. Math. Phys., 279 (2008), No. 1, 169–185. Zbl1147.37034
- K. Kirkpatrick, B. Schlein, G. Staffilani. Derivation of the two dimensional nonlinear Schrödinger equation from many body quantum dynamics. Preprint arXiv:0808.0505. Zbl1208.81080
- E.H. Lieb, R. Seiringer. Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett., 88 (2002), 170409. Zbl1041.81107
- E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason. The mathematics of the Bose gas and its condensation. Birkhäuser (2005). Zbl1104.82012
- E.H. Lieb, R. Seiringer, J. Yngvason. A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas. Commun. Math. Phys., 224 (2001) No. 1, 17–31. Zbl0996.82010
- I. Rodnianski, B. Schlein. Quantum fluctuations and rate of convergence towards mean field dynamics. Comm. Math. Phys., 29 (2009), No. 1, 31–611. Zbl1186.82051
- B. Schlein. Derivation of Effective Evolution Equations from Microscopic Quantum Dynamics. Lecture notes for the minicourse held at the 2008 CMI Summer School in Zurich.
- H. Spohn. Kinetic Equations from Hamiltonian Dynamics. Rev. Mod. Phys.52 (1980), No. 3, 569–615.
- T. Tao.Nonlinear dispersive equations. Local and global analysis. CBMS 106 (2006), AMS. Zbl1106.35001

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.