Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies

Thomas Chen; Nataša Pavlović

Mathematical Modelling of Natural Phenomena (2010)

  • Volume: 5, Issue: 4, page 54-72
  • ISSN: 0973-5348

Abstract

top
In this paper, we review some of our recent results in the study of the dynamics of interacting Bose gases in the Gross-Pitaevskii (GP) limit. Our investigations focus on the well-posedness of the associated Cauchy problem for the infinite particle system described by the GP hierarchy.

How to cite

top

Chen, Thomas, and Pavlović, Nataša. "Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies." Mathematical Modelling of Natural Phenomena 5.4 (2010): 54-72. <http://eudml.org/doc/197630>.

@article{Chen2010,
abstract = {In this paper, we review some of our recent results in the study of the dynamics of interacting Bose gases in the Gross-Pitaevskii (GP) limit. Our investigations focus on the well-posedness of the associated Cauchy problem for the infinite particle system described by the GP hierarchy.},
author = {Chen, Thomas, Pavlović, Nataša},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {Bose gas; Gross-Pitaevskii limit; BBGKY hierarchy; nonlinear Schrödinger equations; mean field limit},
language = {eng},
month = {5},
number = {4},
pages = {54-72},
publisher = {EDP Sciences},
title = {Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies},
url = {http://eudml.org/doc/197630},
volume = {5},
year = {2010},
}

TY - JOUR
AU - Chen, Thomas
AU - Pavlović, Nataša
TI - Recent Results on the Cauchy Problem for Focusing and Defocusing Gross-Pitaevskii Hierarchies
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/5//
PB - EDP Sciences
VL - 5
IS - 4
SP - 54
EP - 72
AB - In this paper, we review some of our recent results in the study of the dynamics of interacting Bose gases in the Gross-Pitaevskii (GP) limit. Our investigations focus on the well-posedness of the associated Cauchy problem for the infinite particle system described by the GP hierarchy.
LA - eng
KW - Bose gas; Gross-Pitaevskii limit; BBGKY hierarchy; nonlinear Schrödinger equations; mean field limit
UR - http://eudml.org/doc/197630
ER -

References

top
  1. R. Adami, G. Golse, A. Teta. Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys., 127 (2007), No. 6, 1194–1220. Zbl1118.81021
  2. M. Aizenman, E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason. Bose-Einstein Quantum Phase Transition in an Optical Lattice Model. Phys. Rev. A, 70 (2004), 023612. Zbl1170.82325
  3. I. Anapolitanos, I.M. Sigal. The Hartree-von Neumann limit of many body dynamics. Preprint .  URIhttp://arxiv.org/abs/0904.4514
  4. V. Bach, T. Chen, J. Fröhlich and I.M. Sigal. Smooth Feshbach map and operator-theoretic renormalization group methods. J. Funct. Anal., 203 (2003), No. 1, 44-92.  Zbl1060.47028
  5. T. Cazenave. Semilinear Schrödinger equations. Courant lecture notes, 10 (2003), Amer. Math. Soc..  Zbl1055.35003
  6. T. Chen, N. Pavlović. The quintic NLS as the mean field limit of a Boson gas with three-body interactions. J. Functional Analysis, conditionally accepted. Preprint .  Zbl1213.35368URIhttp://arxiv.org/abs/0812.2740
  7. T. Chen, N. Pavlović. On the Cauchy problem for focusing and defocusing Gross-Pitaevskii hierarchies. Discr. Contin. Dyn. Syst., 27 (2010), No. 2, 715 - 739.  Zbl1190.35207
  8. T. Chen, N. Pavlović. A short proof of local wellposedness for focusing and defocusing Gross-Pitaevskii hierarchies. Preprint .  Zbl1260.35197URIhttp://arxiv.org/abs/0906.3277
  9. T. Chen, N. Pavlović. Higher order energy conservation, Gagliardo-Nirenberg-Sobolev inequalities, and global well-posedness for Gross-Pitaevskii hierarchies. Preprint .  Zbl1301.35146URIhttp://arxiv.org/abs/0906.2984
  10. T. Chen, N. Pavlović, N. Tzirakis. Energy conservation and blowup of solutions for focusing GP hierarchies. Preprint .  Zbl1200.35253URIhttp://arXiv.org/abs/0905.2704
  11. A. Elgart, L. Erdös, B. Schlein, H.-T. Yau. Gross-Pitaevskii equation as the mean field limit of weakly coupled bosons. Arch. Rat. Mech. Anal., 179 (2006), No. 2, 265–283.  Zbl1086.81035
  12. L. Erdös, B. Schlein, H.-T. Yau. Derivation of the Gross-Pitaevskii hierarchy for the dynamics of Bose-Einstein condensate. Comm. Pure Appl. Math., 59 (2006), No. 12, 1659–1741.  Zbl1122.82018
  13. L. Erdös, B. Schlein, H.-T. Yau. Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems. Invent. Math., 167 (2007), 515–614.  Zbl1123.35066
  14. L. Erdös, H.-T. Yau. Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys., 5 (2001), No. 6, 1169–1205.  Zbl1014.81063
  15. J. Fröhlich, S. Graffi, S. Schwarz. Mean-field- and classical limit of many-body Schrödinger dynamics for bosons. Comm. Math. Phys., 271 (2007), no. 3, 681–697.  Zbl1172.82011
  16. J. Fröhlich, A. Knowles, A. Pizzo. Atomism and quantization. J. Phys. A, 40 (2007), No. 12, 3033–3045.  Zbl1115.81071
  17. J. Fröhlich, A. Knowles, S. Schwarz. On the Mean-Field Limit of Bosons with Coulomb Two-Body Interaction. Preprint arXiv:0805.4299.  Zbl1177.82016
  18. M. Grillakis, M. Machedon, A. Margetis. Second-order corrections to mean field evolution for weakly interacting Bosons I. Preprint . Zbl1208.82030URIhttp://arxiv.org/abs/0904.0158
  19. M. Grillakis, A. Margetis. A priori estimates for many-body Hamiltonian evolution of interacting boson system. J. Hyperbolic Differ. Equ., 5 (2008), No. 4, 857–883.  Zbl1160.35357
  20. K. Hepp. The classical limit for quantum mechanical correlation functions. Comm. Math. Phys., 35 (1974), 265–277. 
  21. S. Klainerman, M. Machedon. On the uniqueness of solutions to the Gross-Pitaevskii hierarchy. Commun. Math. Phys., 279 (2008), No. 1, 169–185.  Zbl1147.37034
  22. K. Kirkpatrick, B. Schlein, G. Staffilani. Derivation of the two dimensional nonlinear Schrödinger equation from many body quantum dynamics. Preprint arXiv:0808.0505.  Zbl1208.81080
  23. E.H. Lieb, R. Seiringer. Proof of Bose-Einstein condensation for dilute trapped gases. Phys. Rev. Lett., 88 (2002), 170409.  Zbl1041.81107
  24. E.H. Lieb, R. Seiringer, J.P. Solovej, J. Yngvason. The mathematics of the Bose gas and its condensation. Birkhäuser (2005).  Zbl1104.82012
  25. E.H. Lieb, R. Seiringer, J. Yngvason. A rigorous derivation of the Gross-Pitaevskii energy functional for a two-dimensional Bose gas. Commun. Math. Phys., 224 (2001) No. 1, 17–31.  Zbl0996.82010
  26. I. Rodnianski, B. Schlein. Quantum fluctuations and rate of convergence towards mean field dynamics. Comm. Math. Phys., 29 (2009), No. 1, 31–611.  Zbl1186.82051
  27. B. Schlein. Derivation of Effective Evolution Equations from Microscopic Quantum Dynamics. Lecture notes for the minicourse held at the 2008 CMI Summer School in Zurich.  
  28. H. Spohn. Kinetic Equations from Hamiltonian Dynamics. Rev. Mod. Phys.52 (1980), No. 3, 569–615.  
  29. T. Tao.Nonlinear dispersive equations. Local and global analysis. CBMS 106 (2006), AMS.  Zbl1106.35001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.