A generalization of the radiation condition of Sommerfeld for -body Schrödinger operators
We establish a Lieb-Thirring type estimate for Pauli Hamiltonians with non-homogeneous magnetic fields. Besides of depending on the size of the field, the bound also takes into account the size of the field gradient. We then apply the inequality to prove stability of non-relativistic quantum mechanical matter coupled to the quantized ultraviolet-cutoff electromagnetic field for arbitrary values of the fine structure constant.
The atomistic to continuum interface for quasicontinuum energies exhibits nonzero forces under uniform strain that have been called ghost forces. In this paper, we prove for a linearization of a one-dimensional quasicontinuum energy around a uniform strain that the effect of the ghost forces on the displacement nearly cancels and has a small effect on the error away from the interface. We give optimal order error estimates that show that the quasicontinuum displacement converges to the atomistic...
This paper gives an error analysis of the multi-configuration time-dependent Hartree (MCTDH) method for the approximation of multi-particle time-dependent Schrödinger equations. The MCTDH method approximates the multivariate wave function by a linear combination of products of univariate functions and replaces the high-dimensional linear Schrödinger equation by a coupled system of ordinary differential equations and low-dimensional nonlinear partial differential equations. The main result of this...
We present a novel application of best N-term approximation theory in the framework of electronic structure calculations. The paper focusses on the description of electron correlations within a Jastrow-type ansatz for the wavefunction. As a starting point we discuss certain natural assumptions on the asymptotic behaviour of two-particle correlation functions near electron-electron and electron-nuclear cusps. Based on Nitsche's characterization of best N-term approximation spaces , we prove...
We discuss best N-term approximation spaces for one-electron wavefunctions and reduced density matrices ρ emerging from Hartree-Fock and density functional theory. The approximation spaces for anisotropic wavelet tensor product bases have been recently characterized by Nitsche in terms of tensor product Besov spaces. We have used the norm equivalence of these spaces to weighted spaces of wavelet coefficients to proof that both and ρ are in for all with . Our proof is based on the...
The numerical solution of the Hartree-Fock equations is a central problem in quantum chemistry for which numerous algorithms exist. Attempts to justify these algorithms mathematically have been made, notably in [E. Cancès and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], but, to our knowledge, no complete convergence proof has been published, except for the large-Z result of [M. Griesemer and F. Hantsch, Arch. Rational Mech. Anal. (2011) 170]. In this paper, we prove the convergence of...
The numerical solution of the Hartree-Fock equations is a central problem in quantum chemistry for which numerous algorithms exist. Attempts to justify these algorithms mathematically have been made, notably in [E. Cancès and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], but, to our knowledge, no complete convergence proof has been published, except for the large-Z result of [M. Griesemer and F. Hantsch, Arch. Rational Mech. Anal. (2011) 170]. In this paper, we prove the convergence of...
The numerical solution of the Hartree-Fock equations is a central problem in quantum chemistry for which numerous algorithms exist. Attempts to justify these algorithms mathematically have been made, notably in [E. Cancès and C. Le Bris, Math. Mod. Numer. Anal. 34 (2000) 749–774], but, to our knowledge, no complete convergence proof has been published, except for the large-Z result of [M. Griesemer and F. Hantsch, Arch. Rational Mech. Anal. (2011) ...
L’objet de cet exposé est de montrer comment l’évolution de Schrödinger pour le problème à corps quantique est approchée, lorsque tend vers l’infini, dans un régime convenable, par une évolution non-linéaire en dimension trois d’espace. On traitera le cas des bosons, qui conduit à l’équation de Schrödinger-Poisson, et celui des fermions, qui débouche sur le système de Hartree-Fock.