# On Oscillatory Instability in Convective Burning of Gas-Permeable Explosives

I. Brailovsky; M. Frankel; L. Kagan; G. Sivashinsky

Mathematical Modelling of Natural Phenomena (2010)

- Volume: 6, Issue: 1, page 3-16
- ISSN: 0973-5348

## Access Full Article

top## Abstract

top## How to cite

topBrailovsky, I., et al. "On Oscillatory Instability in Convective Burning of Gas-Permeable Explosives." Mathematical Modelling of Natural Phenomena 6.1 (2010): 3-16. <http://eudml.org/doc/197645>.

@article{Brailovsky2010,

abstract = {The experimentally known phenomenon of oscillatory instability in convective burning of
porous explosives is discussed. A simple phenomenological model accounting for the
ejection of unburned particles from the consolidated charge is formulated and analyzed. It
is shown that the post-front hydraulic resistance induced by the ejected particles
provides a mechanism for the oscillatory burning.},

author = {Brailovsky, I., Frankel, M., Kagan, L., Sivashinsky, G.},

journal = {Mathematical Modelling of Natural Phenomena},

keywords = {gas-permeable explosives; convective burning; oscillatory instability},

language = {eng},

month = {6},

number = {1},

pages = {3-16},

publisher = {EDP Sciences},

title = {On Oscillatory Instability in Convective Burning of Gas-Permeable Explosives},

url = {http://eudml.org/doc/197645},

volume = {6},

year = {2010},

}

TY - JOUR

AU - Brailovsky, I.

AU - Frankel, M.

AU - Kagan, L.

AU - Sivashinsky, G.

TI - On Oscillatory Instability in Convective Burning of Gas-Permeable Explosives

JO - Mathematical Modelling of Natural Phenomena

DA - 2010/6//

PB - EDP Sciences

VL - 6

IS - 1

SP - 3

EP - 16

AB - The experimentally known phenomenon of oscillatory instability in convective burning of
porous explosives is discussed. A simple phenomenological model accounting for the
ejection of unburned particles from the consolidated charge is formulated and analyzed. It
is shown that the post-front hydraulic resistance induced by the ejected particles
provides a mechanism for the oscillatory burning.

LA - eng

KW - gas-permeable explosives; convective burning; oscillatory instability

UR - http://eudml.org/doc/197645

ER -

## References

top- K. K. Andreev, S. V. Chuiko. Transition of the burning of explosives into an explosion. Russ. J. Phys. Chem., 37 (1963), 695–699.
- K. K. Andreev, A. F. Belyaev. Theory of Explosive Substances. Transi., US Department of Commerce Report AD-643597 (1966).
- A. Bayliss, B. Matkowsky. Two Routes to Chaos in Condensed Phase Combustion. SIAM J. Appl. Math., 50 (1990), 437–59. Zbl0696.76082
- A. F. Belyaev, V. K. Bobolev, A. I. Korotkov, A. A. Sulimov, S. V. Chuiko. Transition from Deflagration to Detonation in Condensed Phases. Israel Program for Scientific Translations, Jerusalem (1975).
- T. B. Benjamin. Effects of a flexible boundary on hydrodynamic stability. J. Fluid Mechanics, 9 (1960), 513–532. Zbl0094.40304
- I. Brailovsky, M. Frankel, G. Sivashinsky. Galloping and spinning modes of subsonic detonation. Combust. Theory Modelling, 4 (2000), 47–60. Zbl0966.76098
- P. Clavin. Theory of gaseous detonations. Chaos, 14 (2004), 825–38. Zbl1080.80010
- P. Dimitriou, J. Puszynski, V. Hlavacek. On the Dynamics of Equations Describing Gasless Combustion in Condensed Systems. Combsut. Sci. Technol., 68 (1989), 101–11.
- V. F. Dubovitskii, V. G. Korostelev, A. I. Korotkov, Yu. V. Frolov, A. N. Firsov, K. G. Shkadinsky, S. V. Khomik. Burning of porous condensed systems and powders. Combust.Expl. Shock Waves, 10 (1974), 730–736.
- B. S. Ermolaev, A. A. Sulimov, V. A. Foteenkov, V. E.Khrapovskii, A. I. Korotkov, A. A. Borisov. Nature of and laws governing quasi-steady-state pulsed convective combustion. Combust. Expl. Shock Waves, 16 (1980), 266–274.
- S. Ergun. Fluid flow through packed columnes. Chem. Engr. Prog.48 (1952), 89–94.
- R. A. Fifer, F. F. Cole. Transition from laminar burning for porous crystalline explosives. Proc. Seventh Symp. (Int.) on Detonation, 7 (1981), 164–174.
- M. Frankel, V. Roytburd, G. Sivashinsky. Complex dynamics generated by a sharp interface model of self-propagating high-temperature synthesis. Combust. Theory Modelling, 2 (1998), 479–96. Zbl0934.80003
- L. Kagan, G. Sivashinsky. A high-porosity limit for the transition from conductive to convective burning in gas-permeable explosives. Combust.Flame, 157 (2010), 357–362.
- S. B. Margolis. The transition to nonsteady deflagration in gasless combustion. Prog. Energy Combust. Sci., 17 (1991), 135–62.
- A. M. Telengator, S. B. Margolis, F. A. Williams. Stability of Quasi-Steady Deflagrations in Confined Porous Energetic Materials. Combust. Sci.Technol., 160 (2000), 259–316.
- A. M. Telengator, F. A. Williams, S. B. Margolis. Finite-rate interphase heat-transfer effects on multiphase burning in confined porous propellants. Combust. Sci. Technol., 178 (2006), 1685–1720.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.