The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts
Mathematical Modelling of Natural Phenomena (2010)
- Volume: 5, Issue: 1, page 106-122
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topSzabó, A., and Czirók, A.. "The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts." Mathematical Modelling of Natural Phenomena 5.1 (2010): 106-122. <http://eudml.org/doc/197659>.
@article{Szabó2010,
abstract = {Collective cell motility and its guidance via cell-cell contacts is instrumental in several morphogenetic and pathological processes such as vasculogenesis or tumor growth. Multicellular sprout elongation, one of the simplest cases of collective motility, depends on a continuous supply of cells streaming along the sprout towards its tip. The phenomenon is often explained as leader cells pulling the rest of the sprout forward via cell-cell adhesion. Building on an empirically demonstrated analogy between surface tension and cell-cell adhesion, we demonstrate that such a mechanism is unable to recruit cells to the sprout. Moreover, the expansion of such hypothetical sprouts is limited by a form of the Plateau-Taylor instability. In contrast, actively moving cells – guided by cell-cell contacts – can readily populate and expand linear sprouts. We argue that preferential attraction to the surfaces of elongated cells can provide a generic mechanism, shared by several cell types, for multicellular sprout formation.},
author = {Szabó, A., Czirók, A.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {sprouting; leader cell; Potts model},
language = {eng},
month = {2},
number = {1},
pages = {106-122},
publisher = {EDP Sciences},
title = {The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts},
url = {http://eudml.org/doc/197659},
volume = {5},
year = {2010},
}
TY - JOUR
AU - Szabó, A.
AU - Czirók, A.
TI - The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/2//
PB - EDP Sciences
VL - 5
IS - 1
SP - 106
EP - 122
AB - Collective cell motility and its guidance via cell-cell contacts is instrumental in several morphogenetic and pathological processes such as vasculogenesis or tumor growth. Multicellular sprout elongation, one of the simplest cases of collective motility, depends on a continuous supply of cells streaming along the sprout towards its tip. The phenomenon is often explained as leader cells pulling the rest of the sprout forward via cell-cell adhesion. Building on an empirically demonstrated analogy between surface tension and cell-cell adhesion, we demonstrate that such a mechanism is unable to recruit cells to the sprout. Moreover, the expansion of such hypothetical sprouts is limited by a form of the Plateau-Taylor instability. In contrast, actively moving cells – guided by cell-cell contacts – can readily populate and expand linear sprouts. We argue that preferential attraction to the surfaces of elongated cells can provide a generic mechanism, shared by several cell types, for multicellular sprout formation.
LA - eng
KW - sprouting; leader cell; Potts model
UR - http://eudml.org/doc/197659
ER -
References
top- M. Alber, N. Chen, T. Glimm, P. M. Lushnikov. Multiscale dynamics of biological cells with chemotactic interactions: from a discrete stochastic model to a continuous description. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 73 (2006), No. 5/1, 051901.
- A. L. Bauer, T. L. Jackson Y. Jiang. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J., 92 (2007), No. 9, 3105–3121
- A. L. Bauer, T. L. Jackson, Y. Jiang. Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLOS Comp. Biol., (in press), 2009.
- J. M. Belmonte, G. L. Thomas, L. G. Brunnet, R. M. C. de Almeida, H. Chaté. Self-propelled particle model for cell-sorting phenomena. Phys. Rev. Lett., 100 (2008), No. 24, 248702.
- D. A. Beysens, G. Forgacs J. A. Glazier. Cell sorting is analogous to phase ordering in fluids. PNAS, 97 (2000), 9467–71
- A. Czirók, E. A. Zamir, A. Szabó C. D. Little. Multicellular sprouting during vasculogenesis. Curr. Top. Dev. Biol., 81 (2008), 269–289
- A. T. Dawes L. Edelstein-Keshet. Phosphoinositides and rho proteins spatially regulate actin polymerization to initiate and maintain directed movement in a one-dimensional model of a motile cell. Biophys. J., 92 (2007), No. 3, 744–768
- P. G. de Gennes, F. Brochard-Wyart, D. Quere. Capillarity and wetting phenomena. Springer, New York, 2003.
- A. Dipasquale. Locomotion of epithelial cells. Factors involved in extension of the leading edge. Exp. Cell Res., 95 (1975), No. 2, 425–439
- O. du Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Silberzan B. Ladoux. Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. U S A, 102 (2005), No. 7, 2390–2395
- G. Forgacs, R. A. Foty, Y. Shafrir M. S. Steinberg. Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J., 74 (1998), No. 5, 2227–2234
- R. A. Foty, C. M. Pfleger, G. Forgacs M. S. Steinberg. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development, 122 (1996), No. 5, 1611–1620
- R. A. Foty M. S. Steinberg. The differential adhesion hypothesis: a direct evaluation. Dev. Biol., 278 (2005), No. 1Cell migration, 255–263
- P. Friedl. Dynamic imaging of cellular interactions with extracellular matrix. Histochem. Cell Biol., 122 (2004), 183–90
- P. Friedl K. Wolf. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res., 68 (2008), No. 18, 7247–7249
- A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi, F. Bussolino. Percolation, morphogenesis, and burgers dynamics in blood vessels formation. Phys. Rev. Lett., 90 (2003), No. 11, 118101.
- H. Gerhardt, M. Golding, M. Fruttiger, C. Ruhrberg, A. Lundkvist, A. Abramsson, M. Jeltsch, C. Mitchell, K. Alitalo, D. Shima C. Betsholtz. Vegf guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol., 161 (2003), No. 6, 1163–1177
- J. A. Glazier F. Graner. Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 47 (1993), No. 3, 2128–2154
- F. Graner J. A. Glazier. Simulation of biological cell sorting using a two-dimensional extended potts model. Phys. Rev. Lett., 69 (1992), No. 13, 2013–2016
- D. S. Gray, J. Tien C. S. Chen. Repositioning of cells by mechanotaxis on surfaces with micropatterned young’s modulus. J. Biomed. Mater. Res. A., 66 (2003), 605–14
- B. Hegedüs, F. Marga, K. Jakab, K. L. Sharpe-Timms G. Forgacs. The interplay of cell-cell and cell-matrix interactions in the invasive properties of brain tumors. Biophysical J., 91 (2006), No. 7, 2708–16
- K. A. Hogan V. L. Bautch. Blood vessel patterning at the embryonic midline. Curr. Top. Dev. Biol., 62 (2004), 55–85
- M. S. Hutson, G. W. Brodland, J. Yang, D. Viens. Cell sorting in three dimensions: topology, fluctuations, and fluidlike instabilities. Phys. Rev. Lett., 101 (2008), No. 14, 148105.
- J. A. Izaguirre, R. Chaturvedi, C. Huang, T. Cickovski, J. Coffland, G. Thomas, G. Forgacs, M. Alber, G. Hentschel, S. A. Newman, J. A. Glazier. Compucell, a multi-model framework for simulation of morphogenesis. Bioinformatics, 20 (2004), No. 7, 1129–1137.
- G. Jiang, A. H. Huang, Y. Cai, M. Tanase M. P. Sheetz. Rigidity sensing at the leading edge through alphavbeta3 integrins and rptpalpha. Biophys J., 90 (2006), 1804–9
- S. Kidoaki T. Matsuda. Shape-engineered fibroblasts: cell elasticity and actin cytoskeletal features characterized by fluorescence and atomic force microscopy. J. Biomed. Mater. Res. A., 81 (2007), No. 4, 803–810
- T. Libotte, H. W. Kaiser, W. Alt, T. Bretschneider. Polarity, protrusion-retraction dynamics and their interplay during keratinocyte cell migration. Exp. Cell Res., 270 (2001), No 2, 129–137.
- C. M. Lo, H. B. Wang, M. Dembo Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys J., 79 (2000), No. 1Cell migration, 144–152
- D. Manoussaki, S. R. Lubkin, R. B. Vernon J. D. Murray. A mechanical model for the formation of vascular networks in vitro. Acta Biotheor, 44 (1996), No. 3-4, 271–282
- R. M. Merks, S. V. Brodsky, M. S. Goligorksy, S. A. Newman J. A. Glazier. Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol., 289 (2006), 44–54
- R. M. H. Merks, E. D. Perryn, A. Shirinifard, J. A. Glazier. Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol., 4 (2008), No. 9, e1000163.
- D. J. Montell. Morphogenetic cell movements: diversity from modular mechanical properties. Science, 322 (2008), No. 5907, 1502–1505
- J. D. Murray. Mathematical Biology. Springer Verlag, Berlin, 2nd edition, 2003.
- J. D. Murray, D. Manoussaki, S. R. Lubkin, R. Vernon. A mechanical theory of in vitro vascular network formation. In C. D. Little, V Mironov, and E. H. Sage, editors, Vascular morphogenesis: In vivo, in vitro, in mente., pages 223–239. Birkhauser, Boston, 1998.
- T. J. Newman. Modeling multicellular systems using subcellular elements. Math. Biosci. Eng., 2 (2005), 611–622
- E. D. Perryn, A. Czirók C. D. Little. Vascular sprout formation entails tissue deformations and ve-cadherin-dependent cell-autonomous motility. Dev. Biol., 313 (2008), 545–55
- A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons A. R. Horwitz. Cell migration: integrating signals from front to back. Science, 302 (2003), No. 5651, 1704–1709
- J. P. Rieu, A. Upadhyaya, J. A. Glazier, N. B. Ouchi Y. Sawada. Diffusion and deformations of single hydra cells in cellular aggregates. Biophys J., 79 (2000), 1903–14
- P. A. Rupp, A. Czirók C. D. Little. alphavbeta3 integrin-dependent endothelial cell dynamics in vivo. Development, 131 (2004), No. 12, 2887–97
- R. K. Sawhney J. Howard. Slow local movements of collagen fibers by fibroblasts drive the rapid global self-organization of collagen gels. J. Cell Biol., 157 (2002), No. 6, 1083–1091
- D. Selmeczi, S. Mosler, P. H. Hagedorn, N. B. Larsen H. Flyvbjerg. Cell motility as persistent random motion: theories from experiments. Biophys J., 89 (2005), 912–31
- G. Serini, D. Ambrosi, E. Giraudo, A. Gamba, L. Preziosi F. Bussolino. Modeling the early stages of vascular network assembly. EMBO J., 22 (2003), 1771–9
- C. L. Stokes, D. A. Lauffenburger S. K. Williams. Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J. Cell Sci., 99 (1991), 419–30
- A. Szabó, R. Ünnep, E. Méhes, W. Twal, S. Argraves, Y. Cho, A. Czirók. Collective cell motion in endothelial monolayers. (preprint)
- A. Szabó, E. Méhes, E. Kósa A. Czirók. Multicellular sprouting in vitro. Biophys J., 95 (2008), No. 6, 2702–2710
- A. Szabó, E. D. Perryn, A. Czirók. Network formation of tissue cells via preferential attraction to elongated structures. Phys. Rev. Lett., 98 (2007), No. 3, 038102.
- J. M. Teddy P. M. Kulesa. In vivo evidence for short- and long-range cell communication in cranial neural crest cells. Development, 131 (2004), No. 24, 6141–6151
- E. Tzima, M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisser M. A. Schwartz. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature, 437 (2005), No. 7057, 426–431
- A. Upadhyaya, J.-P. Rieu, J. A. Glazier Y. Sawada. Anomalous diffusion and non-gaussian velocity distribution of hydra cells in cellular aggregates. Physica A, 293 (2001), 549–558
- A. B. Verkhovsky, T. M. Svitkina G. G. Borisy. Self-polarization and directional motility of cytoplasm. Curr. Biol., 9 (1999), No. 1Cell migration, 11–20
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.