The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts

A. Szabó; A. Czirók

Mathematical Modelling of Natural Phenomena (2010)

  • Volume: 5, Issue: 1, page 106-122
  • ISSN: 0973-5348

Abstract

top
Collective cell motility and its guidance via cell-cell contacts is instrumental in several morphogenetic and pathological processes such as vasculogenesis or tumor growth. Multicellular sprout elongation, one of the simplest cases of collective motility, depends on a continuous supply of cells streaming along the sprout towards its tip. The phenomenon is often explained as leader cells pulling the rest of the sprout forward via cell-cell adhesion. Building on an empirically demonstrated analogy between surface tension and cell-cell adhesion, we demonstrate that such a mechanism is unable to recruit cells to the sprout. Moreover, the expansion of such hypothetical sprouts is limited by a form of the Plateau-Taylor instability. In contrast, actively moving cells – guided by cell-cell contacts – can readily populate and expand linear sprouts. We argue that preferential attraction to the surfaces of elongated cells can provide a generic mechanism, shared by several cell types, for multicellular sprout formation.

How to cite

top

Szabó, A., and Czirók, A.. "The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts." Mathematical Modelling of Natural Phenomena 5.1 (2010): 106-122. <http://eudml.org/doc/197659>.

@article{Szabó2010,
abstract = {Collective cell motility and its guidance via cell-cell contacts is instrumental in several morphogenetic and pathological processes such as vasculogenesis or tumor growth. Multicellular sprout elongation, one of the simplest cases of collective motility, depends on a continuous supply of cells streaming along the sprout towards its tip. The phenomenon is often explained as leader cells pulling the rest of the sprout forward via cell-cell adhesion. Building on an empirically demonstrated analogy between surface tension and cell-cell adhesion, we demonstrate that such a mechanism is unable to recruit cells to the sprout. Moreover, the expansion of such hypothetical sprouts is limited by a form of the Plateau-Taylor instability. In contrast, actively moving cells – guided by cell-cell contacts – can readily populate and expand linear sprouts. We argue that preferential attraction to the surfaces of elongated cells can provide a generic mechanism, shared by several cell types, for multicellular sprout formation.},
author = {Szabó, A., Czirók, A.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {sprouting; leader cell; Potts model},
language = {eng},
month = {2},
number = {1},
pages = {106-122},
publisher = {EDP Sciences},
title = {The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts},
url = {http://eudml.org/doc/197659},
volume = {5},
year = {2010},
}

TY - JOUR
AU - Szabó, A.
AU - Czirók, A.
TI - The Role of Cell-Cell Adhesion in the Formation of Multicellular Sprouts
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/2//
PB - EDP Sciences
VL - 5
IS - 1
SP - 106
EP - 122
AB - Collective cell motility and its guidance via cell-cell contacts is instrumental in several morphogenetic and pathological processes such as vasculogenesis or tumor growth. Multicellular sprout elongation, one of the simplest cases of collective motility, depends on a continuous supply of cells streaming along the sprout towards its tip. The phenomenon is often explained as leader cells pulling the rest of the sprout forward via cell-cell adhesion. Building on an empirically demonstrated analogy between surface tension and cell-cell adhesion, we demonstrate that such a mechanism is unable to recruit cells to the sprout. Moreover, the expansion of such hypothetical sprouts is limited by a form of the Plateau-Taylor instability. In contrast, actively moving cells – guided by cell-cell contacts – can readily populate and expand linear sprouts. We argue that preferential attraction to the surfaces of elongated cells can provide a generic mechanism, shared by several cell types, for multicellular sprout formation.
LA - eng
KW - sprouting; leader cell; Potts model
UR - http://eudml.org/doc/197659
ER -

References

top
  1. M. Alber, N. Chen, T. Glimm, P. M. Lushnikov. Multiscale dynamics of biological cells with chemotactic interactions: from a discrete stochastic model to a continuous description. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 73 (2006), No. 5/1, 051901.  
  2. A. L. Bauer, T. L. Jackson Y. Jiang. A cell-based model exhibiting branching and anastomosis during tumor-induced angiogenesis. Biophys. J., 92 (2007), No. 9, 3105–3121 
  3. A. L. Bauer, T. L. Jackson, Y. Jiang. Topography of extracellular matrix mediates vascular morphogenesis and migration speeds in angiogenesis. PLOS Comp. Biol., (in press), 2009.  
  4. J. M. Belmonte, G. L. Thomas, L. G. Brunnet, R. M. C. de Almeida, H. Chaté. Self-propelled particle model for cell-sorting phenomena. Phys. Rev. Lett., 100 (2008), No. 24, 248702.  
  5. D. A. Beysens, G. Forgacs J. A. Glazier. Cell sorting is analogous to phase ordering in fluids. PNAS, 97 (2000), 9467–71 
  6. A. Czirók, E. A. Zamir, A. Szabó C. D. Little. Multicellular sprouting during vasculogenesis. Curr. Top. Dev. Biol., 81 (2008), 269–289 
  7. A. T. Dawes L. Edelstein-Keshet. Phosphoinositides and rho proteins spatially regulate actin polymerization to initiate and maintain directed movement in a one-dimensional model of a motile cell. Biophys. J., 92 (2007), No. 3, 744–768 
  8. P. G. de Gennes, F. Brochard-Wyart, D. Quere. Capillarity and wetting phenomena. Springer, New York, 2003.  
  9. A. Dipasquale. Locomotion of epithelial cells. Factors involved in extension of the leading edge. Exp. Cell Res., 95 (1975), No. 2, 425–439 
  10. O. du Roure, A. Saez, A. Buguin, R. H. Austin, P. Chavrier, P. Silberzan B. Ladoux. Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. U S A, 102 (2005), No. 7, 2390–2395 
  11. G. Forgacs, R. A. Foty, Y. Shafrir M. S. Steinberg. Viscoelastic properties of living embryonic tissues: a quantitative study. Biophys. J., 74 (1998), No. 5, 2227–2234 
  12. R. A. Foty, C. M. Pfleger, G. Forgacs M. S. Steinberg. Surface tensions of embryonic tissues predict their mutual envelopment behavior. Development, 122 (1996), No. 5, 1611–1620 
  13. R. A. Foty M. S. Steinberg. The differential adhesion hypothesis: a direct evaluation. Dev. Biol., 278 (2005), No. 1Cell migration, 255–263 
  14. P. Friedl. Dynamic imaging of cellular interactions with extracellular matrix. Histochem. Cell Biol., 122 (2004), 183–90 
  15. P. Friedl K. Wolf. Tube travel: the role of proteases in individual and collective cancer cell invasion. Cancer Res., 68 (2008), No. 18, 7247–7249 
  16. A. Gamba, D. Ambrosi, A. Coniglio, A. de Candia, S. Di Talia, E. Giraudo, G. Serini, L. Preziosi, F. Bussolino. Percolation, morphogenesis, and burgers dynamics in blood vessels formation. Phys. Rev. Lett., 90 (2003), No. 11, 118101.  
  17. H. Gerhardt, M. Golding, M. Fruttiger, C. Ruhrberg, A. Lundkvist, A. Abramsson, M. Jeltsch, C. Mitchell, K. Alitalo, D. Shima C. Betsholtz. Vegf guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol., 161 (2003), No. 6, 1163–1177 
  18. J. A. Glazier F. Graner. Simulation of the differential adhesion driven rearrangement of biological cells. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 47 (1993), No. 3, 2128–2154 
  19. F. Graner J. A. Glazier. Simulation of biological cell sorting using a two-dimensional extended potts model. Phys. Rev. Lett., 69 (1992), No. 13, 2013–2016 
  20. D. S. Gray, J. Tien C. S. Chen. Repositioning of cells by mechanotaxis on surfaces with micropatterned young’s modulus. J. Biomed. Mater. Res. A., 66 (2003), 605–14 
  21. B. Hegedüs, F. Marga, K. Jakab, K. L. Sharpe-Timms G. Forgacs. The interplay of cell-cell and cell-matrix interactions in the invasive properties of brain tumors. Biophysical J., 91 (2006), No. 7, 2708–16 
  22. K. A. Hogan V. L. Bautch. Blood vessel patterning at the embryonic midline. Curr. Top. Dev. Biol., 62 (2004), 55–85 
  23. M. S. Hutson, G. W. Brodland, J. Yang, D. Viens. Cell sorting in three dimensions: topology, fluctuations, and fluidlike instabilities. Phys. Rev. Lett., 101 (2008), No. 14, 148105.  
  24. J. A. Izaguirre, R. Chaturvedi, C. Huang, T. Cickovski, J. Coffland, G. Thomas, G. Forgacs, M. Alber, G. Hentschel, S. A. Newman, J. A. Glazier. Compucell, a multi-model framework for simulation of morphogenesis. Bioinformatics, 20 (2004), No. 7, 1129–1137.  
  25. G. Jiang, A. H. Huang, Y. Cai, M. Tanase M. P. Sheetz. Rigidity sensing at the leading edge through alphavbeta3 integrins and rptpalpha. Biophys J., 90 (2006), 1804–9 
  26. S. Kidoaki T. Matsuda. Shape-engineered fibroblasts: cell elasticity and actin cytoskeletal features characterized by fluorescence and atomic force microscopy. J. Biomed. Mater. Res. A., 81 (2007), No. 4, 803–810 
  27. T. Libotte, H. W. Kaiser, W. Alt, T. Bretschneider. Polarity, protrusion-retraction dynamics and their interplay during keratinocyte cell migration. Exp. Cell Res., 270 (2001), No 2, 129–137.  
  28. C. M. Lo, H. B. Wang, M. Dembo Y. L. Wang. Cell movement is guided by the rigidity of the substrate. Biophys J., 79 (2000), No. 1Cell migration, 144–152 
  29. D. Manoussaki, S. R. Lubkin, R. B. Vernon J. D. Murray. A mechanical model for the formation of vascular networks in vitro. Acta Biotheor, 44 (1996), No. 3-4, 271–282 
  30. R. M. Merks, S. V. Brodsky, M. S. Goligorksy, S. A. Newman J. A. Glazier. Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Dev. Biol., 289 (2006), 44–54 
  31. R. M. H. Merks, E. D. Perryn, A. Shirinifard, J. A. Glazier. Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS Comput. Biol., 4 (2008), No. 9, e1000163.  
  32. D. J. Montell. Morphogenetic cell movements: diversity from modular mechanical properties. Science, 322 (2008), No. 5907, 1502–1505 
  33. J. D. Murray. Mathematical Biology. Springer Verlag, Berlin, 2nd edition, 2003.  
  34. J. D. Murray, D. Manoussaki, S. R. Lubkin, R. Vernon. A mechanical theory of in vitro vascular network formation. In C. D. Little, V Mironov, and E. H. Sage, editors, Vascular morphogenesis: In vivo, in vitro, in mente., pages 223–239. Birkhauser, Boston, 1998.  
  35. T. J. Newman. Modeling multicellular systems using subcellular elements. Math. Biosci. Eng., 2 (2005), 611–622 
  36. E. D. Perryn, A. Czirók C. D. Little. Vascular sprout formation entails tissue deformations and ve-cadherin-dependent cell-autonomous motility. Dev. Biol., 313 (2008), 545–55 
  37. A. J. Ridley, M. A. Schwartz, K. Burridge, R. A. Firtel, M. H. Ginsberg, G. Borisy, J. T. Parsons A. R. Horwitz. Cell migration: integrating signals from front to back. Science, 302 (2003), No. 5651, 1704–1709 
  38. J. P. Rieu, A. Upadhyaya, J. A. Glazier, N. B. Ouchi Y. Sawada. Diffusion and deformations of single hydra cells in cellular aggregates. Biophys J., 79 (2000), 1903–14 
  39. P. A. Rupp, A. Czirók C. D. Little. alphavbeta3 integrin-dependent endothelial cell dynamics in vivo. Development, 131 (2004), No. 12, 2887–97 
  40. R. K. Sawhney J. Howard. Slow local movements of collagen fibers by fibroblasts drive the rapid global self-organization of collagen gels. J. Cell Biol., 157 (2002), No. 6, 1083–1091 
  41. D. Selmeczi, S. Mosler, P. H. Hagedorn, N. B. Larsen H. Flyvbjerg. Cell motility as persistent random motion: theories from experiments. Biophys J., 89 (2005), 912–31 
  42. G. Serini, D. Ambrosi, E. Giraudo, A. Gamba, L. Preziosi F. Bussolino. Modeling the early stages of vascular network assembly. EMBO J., 22 (2003), 1771–9 
  43. C. L. Stokes, D. A. Lauffenburger S. K. Williams. Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J. Cell Sci., 99 (1991), 419–30 
  44. A. Szabó, R. Ünnep, E. Méhes, W. Twal, S. Argraves, Y. Cho, A. Czirók. Collective cell motion in endothelial monolayers. (preprint)  
  45. A. Szabó, E. Méhes, E. Kósa A. Czirók. Multicellular sprouting in vitro. Biophys J., 95 (2008), No. 6, 2702–2710 
  46. A. Szabó, E. D. Perryn, A. Czirók. Network formation of tissue cells via preferential attraction to elongated structures. Phys. Rev. Lett., 98 (2007), No. 3, 038102.  
  47. J. M. Teddy P. M. Kulesa. In vivo evidence for short- and long-range cell communication in cranial neural crest cells. Development, 131 (2004), No. 24, 6141–6151 
  48. E. Tzima, M. Irani-Tehrani, W. B. Kiosses, E. Dejana, D. A. Schultz, B. Engelhardt, G. Cao, H. DeLisser M. A. Schwartz. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature, 437 (2005), No. 7057, 426–431 
  49. A. Upadhyaya, J.-P. Rieu, J. A. Glazier Y. Sawada. Anomalous diffusion and non-gaussian velocity distribution of hydra cells in cellular aggregates. Physica A, 293 (2001), 549–558 
  50. A. B. Verkhovsky, T. M. Svitkina G. G. Borisy. Self-polarization and directional motility of cytoplasm. Curr. Biol., 9 (1999), No. 1Cell migration, 11–20 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.