Models of Self-Organizing Bacterial Communities and Comparisons with Experimental Observations
A. Marrocco; H. Henry; I. B. Holland; M. Plapp; S. J. Séror; B. Perthame
Mathematical Modelling of Natural Phenomena (2010)
- Volume: 5, Issue: 1, page 148-162
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topMarrocco, A., et al. "Models of Self-Organizing Bacterial Communities and Comparisons with Experimental Observations." Mathematical Modelling of Natural Phenomena 5.1 (2010): 148-162. <http://eudml.org/doc/197701>.
@article{Marrocco2010,
abstract = {Bacillus subtilis swarms rapidly over the surface of a synthetic medium
creating remarkable hyperbranched dendritic communities. Models to reproduce such effects
have been proposed under the form of parabolic Partial Differential Equations representing
the dynamics of the active cells (both motile and multiplying), the passive cells
(non-motile and non-growing) and nutrient concentration. We test the numerical behavior of
such models and compare them to relevant experimental data together with a critical
analysis of the validity of the models based on recent observations of the swarming
bacteria which show that nutrients are not limitating but distinct subpopulations growing
at different rates are likely present.},
author = {Marrocco, A., Henry, H., Holland, I. B., Plapp, M., Séror, S. J., Perthame, B.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {Dendritic patterns; Bacillus subtilis swarming; Reaction-diffusion equations; Cell community growth.; dendritic patterns; Bacillus subtilis swarming; cell community growth},
language = {eng},
month = {2},
number = {1},
pages = {148-162},
publisher = {EDP Sciences},
title = {Models of Self-Organizing Bacterial Communities and Comparisons with Experimental Observations},
url = {http://eudml.org/doc/197701},
volume = {5},
year = {2010},
}
TY - JOUR
AU - Marrocco, A.
AU - Henry, H.
AU - Holland, I. B.
AU - Plapp, M.
AU - Séror, S. J.
AU - Perthame, B.
TI - Models of Self-Organizing Bacterial Communities and Comparisons with Experimental Observations
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/2//
PB - EDP Sciences
VL - 5
IS - 1
SP - 148
EP - 162
AB - Bacillus subtilis swarms rapidly over the surface of a synthetic medium
creating remarkable hyperbranched dendritic communities. Models to reproduce such effects
have been proposed under the form of parabolic Partial Differential Equations representing
the dynamics of the active cells (both motile and multiplying), the passive cells
(non-motile and non-growing) and nutrient concentration. We test the numerical behavior of
such models and compare them to relevant experimental data together with a critical
analysis of the validity of the models based on recent observations of the swarming
bacteria which show that nutrients are not limitating but distinct subpopulations growing
at different rates are likely present.
LA - eng
KW - Dendritic patterns; Bacillus subtilis swarming; Reaction-diffusion equations; Cell community growth.; dendritic patterns; Bacillus subtilis swarming; cell community growth
UR - http://eudml.org/doc/197701
ER -
References
top- M. Banaha, A. Daerr L. Limat. Spreading of liquid drops on agar gels. Eur. Phys. J. Special Topics, 166 (2009), 185–188
- M. Bees, P. Andresén, E. Mosekilde M. Givskov. The interaction of thin-film flow, bacterial swarming and cell differentiation in colonies of Serratia liquefaciens. J. Math. Biol., 40 (2000), 27–63
- A. Blanchet, J. Dolbeault, B. Perthame. Two dimensional Keller-Segel model in ℝ2: optimal critical mass and qualitative properties of the solution. Electron. J. Diff. Eqns., 2006(44) (2006), 1–32.
- S. E. Esipov, J. A. Shapiro. Kinetic model of Proteus mirabilis swarm colony development. J. Math. Biology, 36 (1998), No 1Cell migration, 249–268.
- E. Frénod. Existence result of a model of Proteus mirabilis swarm. Diff. and Integr. eq., 19 (2006), No 1Cell migration, 697–720.
- I. Golding, Y. Kozlovsky, I. Cohen E. Ben-Jacob. Studies of bacterial branching growth using reaction-diffusion models for colonial development. Phys. A, 260 (1998), 510–554
- P. Gray, S. K. Scott. Autocatalytic reactions in the isothermal continuous stirred tank reactor: isolas and other forms of multistability. Chem. Eng. Sci., 38 (1983), No 1Cell migration, 29–43.
- K. Hamze, D. Julkowska, S. Autret, K. Hinc, K. Nagorska, A. Sekowska, I. B. Holl S. J. Séror. Identification of genes required for different stages of dendritic swarming in Bacillus subtilis, with a novel role for phrC. Microbiology, 155 (2009), 398–412
- D. Julkowska, M. Obuchowski, I. B. Holl S. J. Séror. Branched swarming patterns on a synthetic medium formed by wild type Bacillus subtilis strain 3610. Microbiology, 150 (2004), 1839–1849
- D. Julkowska, M. Obuchowski, I. B. Holland, S. J. Séror. Comparative analysis of the development of swarming communities Bacillus subtilis 168 and a natural wild type: critical effects of surfactin and the composition of the medium. J. Bacteriol.187 (2005), 65–74.
- K. Kawasaki, A. Mochizuki, M. Matsushita, T. Umeda, N. Shigesada. Modeling spatio-temporal patterns created by Bacillus-subtilis. J. Theor. Biol.188 (1997), 177–185.
- E. F. Keller L. A. Segel. Model for chemotaxis. J. Theor. Biol., 30 (1971), 225–234
- D. A. Kessler H. Levine. Fluctuation induced diffusive instabilities. Nature, 394 (1998), 556–558
- T. Kolokolnikov, M. J. Ward J. Wei. The existence and stability of spike equilibria in the one-dimensional Gray-Scott model: the pulse-splitting regime. Physica D, 202 (2005), 258–293
- Y. Kozlovsky, I. Cohen, I. Golding, E. Ben-Jacob. Lubricating bacteria model for branching growth of bacterial colony. Phys. Rev. E, Phys. plasmas fluids Relat. Interdisciplinary Topics, 50 (1999), 7025–7035.
- A. Marrocco. 2D simulation of chemotactic bacteria aggregation. ESAIM: Math. Modelling and Numerical Analysis, 37 (2003), 617–630
- A. Marrocco. Aggrégation de bactéries. Simulations numériques de modèles de réaction-diffusion à l’aide d’éléments finis mixtes. INRIA report (2007) : URIhttp://hal.inria.fr/docs/00/12/38/91/PDF/RR-6092.pdf
- R. J. Metzger, O. D. Klein, G. R. Martin, M. A. Krasnow. The branching programme of mouse lung development. Nature453 (2008), 745–750.
- M. Mimura, H. Sakaguchi M. Matsushita. Reaction diffusion modelling of bacterial colony patterns. Physica A, 282 (2000), 283–303
- J. Müller, W. van Saarloos. Morphological instability and dynamics of fronts in bacterial growth models with nonlinear diffusion. Phys. Rev. E, 65 (2002), 061111.
- C. B. Muratov, V. V. Osipov. Traveling spike autosolitons in the Gray-Scott model. Physica D, 155 (2001), 112–131.
- J. D. Murray. Mathematical biology, Vol. 1 and 2, Second edition. Springer (2002).
- B. Perthame. Transport Equations in Biology (LN Series Frontiers in Mathematics), Birkhauser, (2007).
- O. Rauprich, M. Matshushita, C. J. Weijer, F. Siegert, S. E. Esipov, J. A. Shapiro. Periodic phenomena in Proteus mirabilis swarm colony development. J. Bacteriol.178 (1996), 6525–6538.
- S. M. Troian, X. L. Wu S. A. Safran. Fingering instabilities in thin wetting films. Phys. Rev. Lett., 62 (1989), 1496–1499
- J. Y. Wakano, A. Komoto, Y. Yamaguchi. Phase transition of traveling waves in bacterial colony pattern. Phys. Rev. E69 (2004), 051904, 1–9.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.