On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion

J.A. Sherratt

Mathematical Modelling of Natural Phenomena (2010)

  • Volume: 5, Issue: 5, page 64-79
  • ISSN: 0973-5348

Abstract

top
Reaction-diffusion equations with degenerate nonlinear diffusion are in widespread use as models of biological phenomena. This paper begins with a survey of applications to ecology, cell biology and bacterial colony patterns. The author then reviews mathematical results on the existence of travelling wave front solutions of these equations, and their generation from given initial data. A detailed study is then presented of the form of smooth-front waves with speeds close to that of the (unique) sharp-front solution, for the particular equation ut = (uux)x + u(1 − u). Using singular perturbation theory, the author derives an asymptotic approximation to the wave, which gives valuable information about the structure of smooth-front solutions. The approximation compares well with numerical results.

How to cite

top

Sherratt, J.A.. "On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion." Mathematical Modelling of Natural Phenomena 5.5 (2010): 64-79. <http://eudml.org/doc/197714>.

@article{Sherratt2010,
abstract = {Reaction-diffusion equations with degenerate nonlinear diffusion are in widespread use as models of biological phenomena. This paper begins with a survey of applications to ecology, cell biology and bacterial colony patterns. The author then reviews mathematical results on the existence of travelling wave front solutions of these equations, and their generation from given initial data. A detailed study is then presented of the form of smooth-front waves with speeds close to that of the (unique) sharp-front solution, for the particular equation ut = (uux)x + u(1 − u). Using singular perturbation theory, the author derives an asymptotic approximation to the wave, which gives valuable information about the structure of smooth-front solutions. The approximation compares well with numerical results.},
author = {Sherratt, J.A.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {nonlinear diffusion; travelling waves; sharp front; smooth front; asymptotic approximation},
language = {eng},
month = {7},
number = {5},
pages = {64-79},
publisher = {EDP Sciences},
title = {On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion},
url = {http://eudml.org/doc/197714},
volume = {5},
year = {2010},
}

TY - JOUR
AU - Sherratt, J.A.
TI - On the Form of Smooth-Front Travelling Waves in a Reaction-Diffusion Equation with Degenerate Nonlinear Diffusion
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/7//
PB - EDP Sciences
VL - 5
IS - 5
SP - 64
EP - 79
AB - Reaction-diffusion equations with degenerate nonlinear diffusion are in widespread use as models of biological phenomena. This paper begins with a survey of applications to ecology, cell biology and bacterial colony patterns. The author then reviews mathematical results on the existence of travelling wave front solutions of these equations, and their generation from given initial data. A detailed study is then presented of the form of smooth-front waves with speeds close to that of the (unique) sharp-front solution, for the particular equation ut = (uux)x + u(1 − u). Using singular perturbation theory, the author derives an asymptotic approximation to the wave, which gives valuable information about the structure of smooth-front solutions. The approximation compares well with numerical results.
LA - eng
KW - nonlinear diffusion; travelling waves; sharp front; smooth front; asymptotic approximation
UR - http://eudml.org/doc/197714
ER -

References

top
  1. D.G. Aronson. Density dependent interaction systems. In: W.H. Steward et al. (eds.) Dynamics and Modelling of Reactive Systems, pp. 1161-176. Academic Press, New York, 1980.  
  2. B.P. Ayati, G.F. Webb, A.R.A. Anderson. Computational methods and results for structured multiscale models of tumor invasion. Multiscale Modeling & Simulation, 5 (2006), 1-20. 
  3. R.D. Benguria, M.C. Depassier. Speed of fronts of the reaction-diffusion equation. Phys. Rev. Lett., 77 (1996), 1171-1173. 
  4. Z. Biró. Stability of travelling waves for degenerate reaction-diffusion equations of KPP-type. Adv. Nonlinear Stud., 2 (2002), 357-371. 
  5. A.Q. Cai, K.A. Landman, B.D. Hughes. Multi-scale modelling of a wound healing cell migration assay. J. Theor. Biol., 245 (2007), 576-594.  
  6. I. Cohen, I. Golding, Y. Kozlovsky, E. Ben-Jacob, I.G. Ron. Continuous and discrete models of cooperation in complex bacterial colonies. Fractals, 7 (1999), 235-247. 
  7. P. Feng, Z. Zhou. Finite traveling wave solutions in a degenerate cross-diffusion model for bacterial colony. Comm. Pure Appl. Anal., 6 (2007), 1145-1165. 
  8. R.A. Fisher. The wave of advance of advantageous genes. Ann. Eugenics, 7 (1937), 353-369. 
  9. G. García-Ramos, F. Sànchez-Garduño, P.K. Maini. Dispersal can sharpen parapatric boundaries on a spatially varying environment. Ecology, 81 (2000), 749-760. 
  10. R.A. Gatenby, E.T. Gawlinski. A reaction-diffusion model of cancer invasion. Cancer Res., 56 (1996), 4740-4743. 
  11. B.H. Gilding, R. Kersner. A Fisher/KPP-type equation with density-dependent diffusion and convection: travelling-wave solutions. J. Phys. A: Math. Gen., 38 (2005), 3367-3379. 
  12. W.S.C. Gurney, R.M. Nisbet. The regulation of inhomogeneous population. J. Theor. Biol., 52 (1975), 441-457. 
  13. W.S.C. Gurney, R.M. Nisbet. A note on nonlinear population transport. J. Theor. Biol., 56 (1976), 249-251. 
  14. A. Hastings, K. Cuddington, K.F. Davies, C.J. Dugaw, S. Elmendorf, A. Freestone, S. Harrison, M. Holland, J. Lambrinos, U. Malvadkar, B.A. Melbourne, K. Moore, C. Taylor, D. Thomson. The spatial spread of invasions: new developments in theory and evidence. Ecol. Lett., 8 (2005), 91-101.  
  15. J.J. Hellmann, J.E. Byers, B.G. Bierwagen, J.S. Dukes. Five potential consequences of climate change for invasive species. Conserv. Biol., 22 (2008), 534-543. 
  16. D. Hilhorst, R. Kersner, E. Logak, M. Mimura. Interface dynamics of the Fisher equation with degenerate diffusion. J. Differential Equations, 244 (2008), 2870-2889. 
  17. E.J. Hinch. Perturbation Methods. Cambridge University Press, 1991.  
  18. S. Kamin, P. Rosenau. Convergence to the travelling wave solution for a nonlinear reaction-diffusion equation. Rend. Mat. Acc. Lincei, 15 (2004a), 271-280. 
  19. S. Kamin, P. Rosenau. Emergence of waves in a nonlinear convection-reaction-diffusion equation. Adv. Nonlinear Stud., 4 (2004b), 251-272. 
  20. K. Kawasaki, A. Mochizuki, M. Matsushita, T. Umeda, N. Shigesada. Modeling spatio-temporal patterns generated by Bacillus subtilis. J. Theor. Biol., 188 (1997), 177-185. 
  21. J. Kevorkian, J.D. Cole. Multiple Scale and Singular Perturbation Methods. Springer-Verlag, New York, 1996.  
  22. S.Y. Kim, R. Torres, H. Drummond. Simultaneous positive and negative density-dependent dispersal in a colonial bird species. Ecology, 90 (2009), 230-239. 
  23. F. Lutscher. Density-dependent dispersal in integrodifference equations. J. Math. Biol., 56 (2008), 499-524. 
  24. P.K. Maini, S. McElwain, D. Leavesley. A travelling wave model to interpret a wound healing migration assay for human peritoneal mesothelial cells. Tissue Eng., 10 (2004), 475-482.  
  25. L. Malaguti, C. Marcelli. Finite speed of propagation in monostable degenerate reaction-diffusion-convection equations. Advanced Nonlinear Studies, 5 (2005), 223-252. 
  26. L. Malaguti, C. Marcelli. Sharp profiles in degenerate and doubly degenerate Fisher-KPP equations. J. Differential Equations, 195 (2003), 471-496. 
  27. M.B.A. Mansour. Traveling wave solutions of a nonlinear reaction-diffusion-chemotaxis model for bacterial pattern formation. Applied Mathematical Modelling, 32 (2008), 240-247. 
  28. E. Matthysen. Density-dependent dispersal in birds and mammals. Ecography, 28 (2005), 403-416. 
  29. G.S. Medvedev, K. Ono, P.J. Holmes. Travelling wave solutions of the degenerate Kolmogorov-Petrovski-Piskunov equation. Eur. J. Appl. Math., 14 (2003) 343-367.  
  30. W.I. Newman. Some exact solutions to a nonlinear diffusion problem in population genetics and combustion. J. Theor. Biol., 85 (1980), 325-334. 
  31. A. Okubo, A. Hastings, T. Powell. Population dynamics in temporal and spatial domains. In: A. Okubo, S.A. Levin (eds.) Diffusion and ecological problems: modern perspectives, pp. 298-373. Springer, New York, 2001.  
  32. K.J. Painter, J.A. Sherratt. Modelling the movement of interacting cell populations. J. Theor. Biol., 225 (2003), 327-339. 
  33. B.-E. Saether, S. Engen, R. Lande. Finite metapopulation models with density-dependent migration and stochastic local dynamics. Proc. R. Soc. Lond. B, 266 (1999), 113-118. 
  34. F. Sànchez-Garduño, P.K. Maini. Existence and uniqueness of a sharp front travelling wave in degenerate nonlinear diffusion Fisher-KPP equations. J. Math. Biol., 33 (1994a), 163-192. 
  35. F. Sànchez-Garduño, P.K. Maini. An approximation to a sharp front type solution of a density dependent reaction-diffusion equation. Appl. Math. Lett., 7 (1994b), 47-51.  
  36. F. Sànchez-Garduño, P.K. Maini. Travelling wave phenomena in some degenerate reaction-diffusion equations. J. Differential Equations, 117 (1995), 281-319. 
  37. F. Sànchez-Garduño, P.K. Maini, E. Kappos. A review on travelling wave solutions of one-dimensional reaction diffusion equations with non-linear diffusion term. FORMA, 11 (1996a), 45-59. 
  38. F. Sànchez-Garduño, E. Kappos, P.K. Maini. A shooting argument approach to a sharp type solution for nonlinear degenerate Fisher-KPP equations. IMA J. Appl. Math.57 (1996b), 211-221. 
  39. R.A. Satnoianu, P.K. Maini, F. Sànchez-Garduño, J.P. Armitage. Travelling waves in a nonlinear degenerate diffusion model for bacterial pattern formation. Discrete and Continuous Dynamical Systems B, 1 (2001), 339-362. 
  40. B.G. Sengers, C.P. Please, R.O.C. Oreffo. Experimental characterization and computational modelling of two-dimensional cell spreading for skeletal regeneration. J. R. Soc. Interface, 4 (2007), 1107-1117.  
  41. J.A. Sherratt. Wave front propagation in a competition equation with a new motility term modelling contact inhibition between cell populations. Proc. R. Soc. Lond. A456 (2000), 2365-2386. 
  42. J.A. Sherratt, J.D. Murray. Models of epidermal wound healing. Proc. R. Soc. Lond. B, 241 (1990), 29-36.  
  43. J.A. Sherratt, B.P. Marchant. Non-sharp travelling wave fronts in the Fisher equation with degenerate nonlinear diffusion. Appl. Math. Lett.9 (1996), 33-38. 
  44. J.A. Sherratt, M.A.J. Chaplain. A new mathematical model for avascular tumour growth. J. Math. Biol., 43 (2001), 291-312. 
  45. N. Shigesada, K. Kawasaki, E. Teramoto. Spatial segregation of interacting species. J. Math. Biol., 79 (1979), 83-99. 
  46. M.J. Simpson, K.A. Landman, K. Bhaganagarapu. Coalescence of interacting cell populations. J. Theor. Biol.247 (2007), 525-543. 
  47. M.J. Simpson, K.A. Landman, B.D. Hughes, D.F. Newgreen. Looking inside an invasion wave of cells using continuum models: proliferation is the key. J. Theor. Biol., 243 (2006), 343-360.  
  48. J.G. Skellam. Random dispersal in theoretical populations. Biometrika, 38 (1951), 196-218. 
  49. M.J. Smith, J.A. Sherratt, X. Lambin. The effects of density-dependent dispersal on the spatiotemporal dynamics of cyclic populations. J. Theor. Biol., 254 (2008), 264-274. 
  50. A. Tremel, A. Cai, N. Tirtaatmadja, B.D. Hughes, G.W. Stevens, K.A. Landman, A.J. OConnor. Cell migration and proliferation during monolayer formation and wound healing. Chem. Eng. Sci., 64 (2009), 247-253. 
  51. R.R. Veit, M.A. Lewis. Integrodifference models for persistence in fragmented habitats. Bull. Math. Biol., 59 (1997), 107-137. 
  52. Y. Wu. Existence of stationary solutions with transition layers for a class of cross-diffusion systems. Proc. R. Soc. Ed., 132A (2002), 1493-1511. 
  53. J. Ylikarjula, S. Alaja, J. Laakso, D. Tesar. Effects of patch number and dispersal patterns on population dynamics and synchrony. J. Theor. Biol., 207 (2000), 377-387. 
  54. H.Y. Zhu, W. Yuan, C.H. Ou. Justification for wavefront propagation in a tumour growth model with contact inhibition. Proc. R. Soc. Lond. A, 464 (2008), 1257-1273. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.