The Influence of Look-Ahead on the Error Rate of Transcription

Y. R. Yamada; C. S. Peskin

Mathematical Modelling of Natural Phenomena (2010)

  • Volume: 5, Issue: 3, page 206-227
  • ISSN: 0973-5348

Abstract

top
In this paper we study the error rate of RNA synthesis in the look-ahead model for the random walk of RNA polymerase along DNA during transcription. The model’s central assumption is the existence of a window of activity in which ribonucleoside triphosphates (rNTPs) bind reversibly to the template DNA strand before being hydrolyzed and linked covalently to the nascent RNA chain. An unknown, but important, integer parameter of this model is the window size w. Here, we use mathematical analysis and computer simulation to study the rate at which transcriptional errors occur as a function of w. We find dramatic reduction in the error rate of transcription as w increases, especially for small values of w. The error reduction method provided by look-ahead occurs before hydrolysis and covalent linkage of rNTP to the nascent RNA chain, and is therefore distinct from error correction mechanisms that have previously been considered.

How to cite

top

Yamada, Y. R., and Peskin, C. S.. "The Influence of Look-Ahead on the Error Rate of Transcription." Mathematical Modelling of Natural Phenomena 5.3 (2010): 206-227. <http://eudml.org/doc/197719>.

@article{Yamada2010,
abstract = {In this paper we study the error rate of RNA synthesis in the look-ahead model for the random walk of RNA polymerase along DNA during transcription. The model’s central assumption is the existence of a window of activity in which ribonucleoside triphosphates (rNTPs) bind reversibly to the template DNA strand before being hydrolyzed and linked covalently to the nascent RNA chain. An unknown, but important, integer parameter of this model is the window size w. Here, we use mathematical analysis and computer simulation to study the rate at which transcriptional errors occur as a function of w. We find dramatic reduction in the error rate of transcription as w increases, especially for small values of w. The error reduction method provided by look-ahead occurs before hydrolysis and covalent linkage of rNTP to the nascent RNA chain, and is therefore distinct from error correction mechanisms that have previously been considered.},
author = {Yamada, Y. R., Peskin, C. S.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {transcription modeling; elongation dynamics of transcription; error-correcting mechanisms; Gillespie simulation; chemical master equation},
language = {eng},
month = {4},
number = {3},
pages = {206-227},
publisher = {EDP Sciences},
title = {The Influence of Look-Ahead on the Error Rate of Transcription},
url = {http://eudml.org/doc/197719},
volume = {5},
year = {2010},
}

TY - JOUR
AU - Yamada, Y. R.
AU - Peskin, C. S.
TI - The Influence of Look-Ahead on the Error Rate of Transcription
JO - Mathematical Modelling of Natural Phenomena
DA - 2010/4//
PB - EDP Sciences
VL - 5
IS - 3
SP - 206
EP - 227
AB - In this paper we study the error rate of RNA synthesis in the look-ahead model for the random walk of RNA polymerase along DNA during transcription. The model’s central assumption is the existence of a window of activity in which ribonucleoside triphosphates (rNTPs) bind reversibly to the template DNA strand before being hydrolyzed and linked covalently to the nascent RNA chain. An unknown, but important, integer parameter of this model is the window size w. Here, we use mathematical analysis and computer simulation to study the rate at which transcriptional errors occur as a function of w. We find dramatic reduction in the error rate of transcription as w increases, especially for small values of w. The error reduction method provided by look-ahead occurs before hydrolysis and covalent linkage of rNTP to the nascent RNA chain, and is therefore distinct from error correction mechanisms that have previously been considered.
LA - eng
KW - transcription modeling; elongation dynamics of transcription; error-correcting mechanisms; Gillespie simulation; chemical master equation
UR - http://eudml.org/doc/197719
ER -

References

top
  1. A. Alon. An introduction to systems biology: design principles of biological circuits. Chapman and Hall, Boca Raton, 2007.  
  2. E. Abbodanzieri, W. Greenleaf, J. Shaevitz, R. Landick, S. Block. Direct observation of base-pair stepping by RNA polymerase. Nature, 438 (2005), 460-465. 
  3. L. Bai, R. Fulbright, M. Wang. Mechanochemical kinetics of transcription elongation. Phys. Rev. Lett., 98 (2007), No. 6, 068103. 
  4. G. Bar-Nahum, V. Epshtein, A. Ruckenstein, R. Rafikov, A. Mustaev, E. Nudler. A ratchet mechanism of transcription elongation and its control. Cell, 120 (2005), No. 2, 183-193. 
  5. A. Blank, J. Gallant, R. Burgess, L. Loeb. An RNA polymerase mutant with reduced accuracy of chain elongation. Biochemistry, 25 (1986), No. 20, 5920-5928. 
  6. Y. Chen, D. Chafin, D. Price, A. Greenleaf. Drosophila RNA polymerase II mutants that affect transcription elongation. Jour. Biol. Chem., 271 (1996), No. 11, 5993-5999. 
  7. G. Eichhorn, P. Chuknyisky, J. Butzow, R. Beal, C. Garland, C. Janzen, P. Clark, E. Tarien. A structural model for fidelity in transcription. Proc. Natl. Acad. Sci., 91 (1994), No. 16, 7613-7617. 
  8. D. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comp. Phys., 22 (1976), No. 4, 403-434. 
  9. D. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81 (1977), No. 25, 2340-2361. 
  10. S. Greive, P. von Hippel. Thinking quantitatively about transcriptional regulation. Nat. Rev. Mol. Cell Biol., 6 (2005), 221-232. 
  11. K. Herbert, W. Greenleaf, S. Block. Single-molecule studies of RNA polymerase: motoring along. Annu. Rev. Biochem., 77 (2008), 149-176. 
  12. W. Hlavacek, A. Redondo, H. Metzger, C. Wofsy, B. Goldstein. Kinetic proofreading models for cell signaling predict ways to escape kinetic proofreading. Proc. Natl. Acad. Sci., 98 (2001), No. 13, 7295-7300. 
  13. S. Holmes, T. Santangelo, C. Cunningham, J. Roberts, D. Erie. Kinetic investigation of Escherichia coli RNA polymerase mutants that influence nucleotide discrimination and transcription fidelity. Jour. Biol. Chem., 281(2006), No. 27, 18677-18683.  
  14. J. Hopfield. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. Proc. Natl. Acad. Sci., 71 (1974), No. 10, 4135-4139. 
  15. K. Howe, C. Kane, A. Ares. Perturbation of transcription elongation influences the fidelity of internal exon inclusion in saccharomyces cerevisiae. RNA, 9 (2003), No. 8, 993-1006. 
  16. C. Jeon, K. Agarwal. Fidelity of RNA polymerase II transcription controlled by elongation factor TFIIS. Proc. Natl. Acad. Sci., 93 (1996), No. 24, 13677-13682. 
  17. M. Kireeva, Y. Nedlialkov, G. Cremona, Y. Purtov, L. Lubkowska, F. Malagon, Z. Burton, J. Strathern, M. Kashlev. Transient reversal of RNA polymerase II active site closing controls fidelity of transcription elongation. Mol. Cell, 30 (2008), No. 5, 557-566. 
  18. R. Libby, J. Gallant. The role of RNA polymerase in transcriptional fidelity. Mol. Microbiol., 5 (1991), No. 5, 999-1004. 
  19. R. Libby, J Gallant. Phosphorolytic error correction during transcription. Mol. Microbiol., 12 (1994), No. 1, 121-129. 
  20. R. Libby, L. Nelson, J. Calvo, J. Gallant. Transcriptional proofreading in escherichia coli. EMBO Jour., 8 (1989), No. 10, 3153-3158. 
  21. F. Malagon, M. Kireeva, B. Shafer, L. Lubkowska, M. Kashlev, J. Strathern. Mutations in the saccharomyces cerevisiae RPB1 gene conferring hypersensitivity to 6-Azauracil. Genetics, 172 (2006), No. 4, 2201-2209. 
  22. P. Mason, K. Struhl. Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo. Mol. Cell, 17 (2005), No. 6, 831-840. 
  23. M. de la Mata, C. Alonso, S. Kadener, J. Fededa, M. Blaustein, J. Pelisch, P. Cramer, D. Bentley, A. Kornblihtt. A Slow RNA Polymerase II Affects Alternative Splicing in Vivo. Mol. Cell, 12 (2003), No. 2, 525-532. 
  24. T. McKeithan. Kinetic proofreading in T-cell receptor signal transduction. Proc. Natl. Acad. Sci., 92 (1995), No. 11, 5042-5046. 
  25. J. Ninio. Kinetic amplification of enzyme discrimination. Biochimie, 57 (1975), No. 5, 587-595. 
  26. J. Roberts, S. Shankar, J. Filter. RNA polymerase elongation Ffactors. Annu. Rev. Microbiol., 62 (2008), 211-233. 
  27. J. Roussel, R. Zhu. Stochastic kinetics description of a simple transcription model. Bull. Math. Biol., 68 (2006), No. 7, 1681-1713. 
  28. J. Shaevitz, E. Abbondanzieri, R. Landick, S. Block . Backtracking by single RNA polymerase molecules observed at near-base-pair resolution. Nature, 426 (2003), 684-687. 
  29. R. Sims, R. Belotserkovskaya, D. Reinberg. Elongation by RNA polymerase II: the short and long of it. Genes Dev., 18 (2004), 2437-2468. 
  30. C. Springgate, L. Loeb. On the fidelity of transcription by escherichia coli ribonucleic acid polymerase. J. Mol. Biol., 97 (1975), No. 4, 577-591. 
  31. E. Stepanova, J. Lee, M. Ozerova, E. Semenova, K. Datsenko, B. Wanner, K. Severinov, S. Borukhov. Analysis of promoter targets for Escheichia coli transcription elongation factor GreA in vivo and in vitro. J. Bateriol., 189 (2007), No. 24, 8772-8785. 
  32. P. Swain, E. Siggia. The role of proofreading in signal transduction specifity. Biophys. J., 82 (2007), No. 6, 2928-2933. 
  33. V. Tadigotla, D. O’Maoileidigh, A. Sengupta, V. Epshtein, R. Ebright, E. Nudler, A. Ruckenstein. Thermodynamic and kinetic modeling of transcriptional pausing. Prof. Natl. Acad. Sci.,103 (2006), No. 12, 4439-4444.  
  34. J. Thomas, A. Platas, D. Hawley. Transcriptional fidelity and proofreading by RNA polymerase II Cell, 93 (1998), No. 4, 627-637.  
  35. T. Tlusty, R. Bar-Ziv, A. Libchaber. High-fidelity DNA sensing by protein binding fluctuations. Phys. Rev. Lett., 93 (2004), No. 25, 2581031. 
  36. U. Vogel, K. Jensen. The RNA chain elongation rate in escherichia coli depends on the growth rate. J. Bacteriol., 176 (1994), No. 10, 2807-2813. 
  37. M. Voliotis, N. Cohen, C. Molina-Paris, T. Liverpool. Fluctuations, pauses, and backtracking in DNA transcription. Biophys. J., 94 (2008), No. 2, 334-348. 
  38. M. Voliotis, N. Cohen, C. Molina-Paris, T. Liverpool. Backtracking and error correction in DNA transcription in The Art and Science of Statistical Bioinformatics. 104-107, Leeds University Press, Leeds, 2008.  
  39. P. Xie. A dynamic model for transcription elongation and sequence-dependent short pauses by RNA polymerase. BioSystems, 93 (2008), 199-210. 
  40. Y. Yamada, C. Peskin. A chemical kinetic model of transcriptional elongation. LANL ArXiv (2006), q-bio.BM/0603012.  
  41. Y. Yamada, C. Peskin. A look-ahead model for the elongation dynamics of transcription. Biophys. J., 96 (2009), No. 8, 3015-3031. 
  42. N. Zenkin, Y. Yuzenkova, K. Severinov. Transcript-assisted transcriptional proofreading. Science, 313 (2006), No. 5786, 518-520. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.